Eosinophil recruitment and enhanced production of NO are characteristic features of asthma. However, neither the ability of eosinophils to generate NO-derived oxidants nor their role in nitration of targets during asthma is established. Using gas chromatography-mass spectrometry we demonstrate a 10-fold increase in 3-nitrotyrosine (NO2Y) content, a global marker of protein modification by reactive nitrogen species, in proteins recovered from bronchoalveolar lavage of severe asthmatic patients (480 ± 198 μmol/mol tyrosine; n = 11) compared with nonasthmatic subjects (52.5 ± 40.7 μmol/mol tyrosine; n = 12). Parallel gas chromatography-mass spectrometry analyses of bronchoalveolar lavage proteins for 3-bromotyrosine (BrY) and 3-chlorotyrosine (ClY), selective markers of eosinophil peroxidase (EPO)- and myeloperoxidase-catalyzed oxidation, respectively, demonstrated a dramatic preferential formation of BrY in asthmatic (1093 ± 457 μmol BrY/mol tyrosine; 161 ± 88 μmol ClY/mol tyrosine; n = 11 each) compared with nonasthmatic subjects (13 ± 14.5 μmol BrY/mol tyrosine; 65 ± 69 μmol ClY/mol tyrosine; n = 12 each). Bronchial tissue from individuals who died of asthma demonstrated the most intense anti-NO2Y immunostaining in epitopes that colocalized with eosinophils. Although eosinophils from normal subjects failed to generate detectable levels of NO, NO2−, NO3−, or NO2Y, tyrosine nitration was promoted by eosinophils activated either in the presence of physiological levels of NO2− or an exogenous NO source. At low, but not high (e.g., >2 μM/min), rates of NO flux, EPO inhibitors and catalase markedly attenuated aromatic nitration. These results identify eosinophils as a major source of oxidants during asthma. They also demonstrate that eosinophils use distinct mechanisms for generating NO-derived oxidants and identify EPO as an enzymatic source of nitrating intermediates in eosinophils.
A set of glutamylases and deglutamylases controls levels of tubulin polyglutamylation, a prominent post-translational modification of neuronal microtubules. Defective tubulin polyglutamylation was first linked to neurodegeneration in the Purkinje cell degeneration (pcd) mouse, which lacks deglutamylase CCP1, displays massive cerebellar atrophy, and accumulates abnormally glutamylated tubulin in degenerating neurons. We found biallelic rare and damaging variants in the gene encoding CCP1 in 13 individuals with infantile-onset neurodegeneration and confirmed the absence of functional CCP1 along with dysregulated tubulin polyglutamylation. The human disease mainly affected the cerebellum, spinal motor neurons, and peripheral nerves. We also demonstrate previously unrecognized peripheral nerve and spinal motor neuron degeneration in pcd mice, which thus recapitulated key features of the human disease. Our findings link human neurodegeneration to tubulin polyglutamylation, entailing this post-translational modification as a potential target for drug development for neurodegenerative disorders.
In patients with Charcot–Marie–Tooth disease 1A (CMT1A), peripheral nerves display aberrant myelination during postnatal development, followed by slowly progressive demyelination and axonal loss during adult life. Here, we show that myelinating Schwann cells in a rat model of CMT1A exhibit a developmental defect that includes reduced transcription of genes required for myelin lipid biosynthesis. Consequently, lipid incorporation into myelin is reduced, leading to an overall distorted stoichiometry of myelin proteins and lipids with ultrastructural changes of the myelin sheath. Substitution of phosphatidylcholine and phosphatidylethanolamine in the diet is sufficient to overcome the myelination deficit of affected Schwann cells in vivo. This treatment rescues the number of myelinated axons in the peripheral nerves of the CMT rats and leads to a marked amelioration of neuropathic symptoms. We propose that lipid supplementation is an easily translatable potential therapeutic approach in CMT1A and possibly other dysmyelinating neuropathies.
See Scherer (doi:10.1093/awv279) for a scientific commentary on this article.Charcot-Marie-Tooth type 1 neuropathies are inherited disorders of the peripheral nervous system caused by mutations in Schwann cell-related genes. Typically, no causative cure is presently available. Previous preclinical data of our group highlight the low grade, secondary inflammation common to distinct Charcot-Marie-Tooth type 1 neuropathies as a disease amplifier. In the current study, we have tested one of several available clinical agents targeting macrophages through its inhibition of the colony stimulating factor 1 receptor (CSF1R). We here show that in two distinct mouse models of Charcot-Marie-Tooth type 1 neuropathies, the systemic short- and long-term inhibition of CSF1R by oral administration leads to a robust decline in nerve macrophage numbers by ∼70% and substantial reduction of the typical histopathological and functional alterations. Interestingly, in a model for the dominant X-linked form of Charcot-Marie-Tooth type 1 neuropathy, the second most common form of the inherited neuropathies, macrophage ablation favours maintenance of axonal integrity and axonal resprouting, leading to preserved muscle innervation, increased muscle action potential amplitudes and muscle strengths in the range of wild-type mice. In another model mimicking a mild, demyelination-related Charcot-Marie-Tooth type 1 neuropathy caused by reduced P0 (MPZ) gene dosage, macrophage blockade causes an improved preservation of myelin, increased muscle action potential amplitudes, improved nerve conduction velocities and ameliorated muscle strength. These observations suggest that disease-amplifying macrophages can produce multiple adverse effects in the affected nerves which likely funnel down to common clinical features. Surprisingly, treatment of mouse models mimicking Charcot-Marie-Tooth type 1A neuropathy also caused macrophage blockade, but did not result in neuropathic or clinical improvements, most likely due to the late start of treatment of this early onset disease model. In summary, our study shows that targeting peripheral nerve macrophages by an orally administered inhibitor of CSF1R may offer a highly efficacious and safe treatment option for at least two distinct forms of the presently non-treatable Charcot-Marie-Tooth type 1 neuropathies.
We investigated three models for Charcot-Marie-Tooth type 1 (CMT1) neuropathy, comprising mice lacking connexin 32 (Cx32def), mice with reduced myelin protein zero (P0) expression (P0het) and transgenic mouse mutants overexpressing peripheral myelin protein 22 (PMP22tg), with regard of the expression of the developmentally regulated molecules NCAM, L1, the low-affinity NGF-receptor p75 (p75(NTR) ) and the transcription factor component c-Jun. We found that all molecules were uniformly expressed by myelin deficient and supernumerary Schwann cells. The mutant myelinating Schwann cells of PMP22tg mice showed a robust NCAM-immunoreactivity in Schmidt-Lanterman incisures (SLI) that accompanies other early onset abnormalities, such as the presence of supernumerary Schwann cells and impaired myelin formation in some fibers. In line with this, Cx32def and P0het mice, which represent demyelinating models, only rarely express NCAM in SLI. Surprisingly, c-Jun immunoreactivity displayed a mosaic-like pattern with mostly negative and some weakly or moderately positive nuclei both in myelinating Schwann cells and Remak cells of wildtype (wt), P0het and PMP22tg mice. However, c-Jun expression was substantially upregulated in myelinating Schwann cells of Cx32def mice and spatially associated with axon perturbation, a typical predemyelinating feature of Cx32 deficiency. Additionally, c-Jun upregulation was correlated with an elevated level of GDNF, possibly causally linked to the typical compensatory sprouting of axons in Cx32def mice and CMT1X patients. Our findings suggest that in myelinating Schwann cells of distinct models of CMT1, c-Jun upregulation is a marker for predemyelinating axonal perturbation while myelin-related NCAM expression is indicative for early Schwann cell abnormalities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.