Recent efforts in the field of thrombin inhibitor research have focused on the identification of compounds with good oral bioavailability and pharmacokinetics. In this manuscript we describe a metabolism-based approach to the optimization of the 3-(2-phenethylamino)-6-methylpyrazinone acetamide template (e.g., 1) which resulted in the modification of each of the three principal components (i.e., P1, P2, P3) comprising this series. As a result of these studies, several potent thrombin inhibitors (e.g., 20, 24, 25) were identified which exhibit high levels of oral bioavailability and long plasma half-lives.
In an effort to discover potent, clinically useful thrombin inhibitors, a rapid analogue synthetic approach was used to explore the P(1) region. Various benzylamines were coupled to a pyridine/pyrazinone P(2)-P(3) template. One compound with an o-thiadiazole benzylic substitution was found to have a thrombin K(i) of 0.84 nM. A study of ortho-substituted five-membered-ring heterocycles was undertaken and subsequently demonstrated that the o-triazole and tetrazole rings were optimal. Combination of these potent P(1) aryl heterocycles with a variety of P(2)-P(3) groups produced a compound with an extraordinary thrombin inhibitory activity of 1.4 pM. It is hoped that this potency enhancement in P(1) will allow for more diversification in the P(2)-P(3) region to ultimately address additional pharmacological concerns.
The APS Journal Legacy Content is the corpus of 100 years of historical scientific research from the American Physiological Society research journals. This package goes back to the first issue of each of the APS journals including the American Journal of Physiology, first published in 1898. The full text scanned images of the printed pages are easily searchable. Downloads quickly in PDF format.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.