In this paper we report the development of two attachments to a commercial cell phone that transform the phone's integrated lens and image sensor into a 350× microscope and visible-light spectrometer. The microscope is capable of transmission and polarized microscopy modes and is shown to have 1.5 micron resolution and a usable field-of-view of 150×150 with no image processing, and approximately 350×350 when post-processing is applied. The spectrometer has a 300 nm bandwidth with a limiting spectral resolution of close to 5 nm. We show applications of the devices to medically relevant problems. In the case of the microscope, we image both stained and unstained blood-smears showing the ability to acquire images of similar quality to commercial microscope platforms, thus allowing diagnosis of clinical pathologies. With the spectrometer we demonstrate acquisition of a white-light transmission spectrum through diffuse tissue as well as the acquisition of a fluorescence spectrum. We also envision the devices to have immediate relevance in the educational field.
Shape memory polymers (SMPs) have been of great interest because of their ability to be thermally actuated to recover a predetermined shape. Medical applications in clot extracting devices and stents are especially promising. We investigated the thermomechanical properties of a series of Mitsubishi SMPs for potential application as medical devices. Glass transition temperatures and moduli were measured by differential scanning calorimetry and dynamic mechanical analysis. Tensile tests were performed with 20 and 100% maximum strains, at 37 and 808C, which are respectively, body temperature and actuation temperature. Glass transitions are in a favorable range for use in the body (35-758C), with high glassy and rubbery shear moduli in the range of 800 and 2 MPa respectively. Constrained stress-strain recovery cycles showed very low hysteresis after three cycles, which is important to know for preconditioning of the material to ensure identical properties during applications. Isothermal free recovery tests showed shape recoveries above 94% for MP5510 thermoset SMP cured at different temperatures. One material exhibited a shape fixity of 99% and a shape recovery of 85% at 808C over one thermomechanical cycle. These polyurethanes appear particularly well suited for medical applications in deployment devices such as stents or clot extractors.
We have developed and used for the first time a soft x-ray interferometer to probe a large laserproduced plasma with micron spatial resolutions.A neonlike yttrium x-ray laser operating at 155 A was combined with a multilayer coated Mach-Zehnder interferometer to obtain electron density profiles in a plasma produced by laser irradiation of a CH target. The measured electron density profile has been compared to hydrodynamic simulations and shows good agreement near the ablation surface but some discrepancy exists at lower densities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.