Shape memory polymers (SMPs) have been of great interest because of their ability to be thermally actuated to recover a predetermined shape. Medical applications in clot extracting devices and stents are especially promising. We investigated the thermomechanical properties of a series of Mitsubishi SMPs for potential application as medical devices. Glass transition temperatures and moduli were measured by differential scanning calorimetry and dynamic mechanical analysis. Tensile tests were performed with 20 and 100% maximum strains, at 37 and 808C, which are respectively, body temperature and actuation temperature. Glass transitions are in a favorable range for use in the body (35-758C), with high glassy and rubbery shear moduli in the range of 800 and 2 MPa respectively. Constrained stress-strain recovery cycles showed very low hysteresis after three cycles, which is important to know for preconditioning of the material to ensure identical properties during applications. Isothermal free recovery tests showed shape recoveries above 94% for MP5510 thermoset SMP cured at different temperatures. One material exhibited a shape fixity of 99% and a shape recovery of 85% at 808C over one thermomechanical cycle. These polyurethanes appear particularly well suited for medical applications in deployment devices such as stents or clot extractors.
Background: Vascular stents are small tubular scaffolds used in the treatment of arterial stenosis (narrowing of the vessel). Most vascular stents are metallic and are deployed either by balloon expansion or by self-expansion. A shape memory polymer (SMP) stent may enhance flexibility, compliance, and drug elution compared to its current metallic counterparts. The purpose of this study was to describe the fabrication of a laser-activated SMP stent and demonstrate photothermal expansion of the stent in an in vitro artery model.
Shape memory polymer stent prototypes were fabricated from thermoplastic polyurethane. Commercial stents are generally made of stainless steel or other alloys. These alloys are too stiff and prevent most stent designs from being able to navigate small and tortuous vessels to reach intracranial lesions. A solid tubular model and a high flexibility laser etched model are presented. The stents were tested for collapse in a pressure chamber. At 37°C, the full collapse pressure was comparable to that of commercially available stents, and higher than the estimated maximum pressure exerted by intracranial arteries. However, there is a potential for onset of collapse, which needs further study. The stents were crimped and expanded, the laser-etched stent showed full recovery with an expansion ratio of 2.7 and a 1% axial shortening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.