We establish an all-loop conformal Yangian symmetry for the full set of planar amplitudes in the recently proposed integrable bi-scalar field theory in four dimensions. This chiral theory is a particular double scaling limit of γ-twisted weakly coupled N = 4 SYM theory. Each amplitude with a certain order of scalar particles is given by a single fishnet Feynman graph of disc topology cut out of a regular square lattice. The Yangian can be realized by the action of a product of Lax operators with a specific sequence of inhomogeneity parameters on the boundary of the disc. Based on this observation, the Yangian generators of level one for generic bi-scalar amplitudes are explicitly constructed. Finally, we comment on the relation to the dual conformal symmetry of these scattering amplitudes.This paper is dedicated to the memory of L.D.Faddeev.
Various classes of fishnet Feynman graphs are shown to feature a Yangian symmetry over the conformal algebra. We explicitly discuss scalar graphs in three, four and six spacetime dimensions as well as the inclusion of fermions in four dimensions. The Yangian symmetry results in novel differential equations for these families of largely unsolved Feynman integrals. Notably, the considered fishnet graphs in three and four dimensions dominate the correlation functions and scattering amplitudes in specific double scaling limits of planar, γ-twisted N = 4 super Yang-Mills or ABJM theory. Consequently, the study of fishnet graphs allows us to get deep insights into the integrability of the planar AdS/CFT correspondence.
We explore the idea to bootstrap Feynman integrals using integrability. In particular, we put the recently discovered Yangian symmetry of conformal Feynman integrals to work. As a prototypical example we demonstrate that the D-dimensional box integral with generic propagator powers is completely fixed by its symmetries to be a particular linear combination of Appell hypergeometric functions. In this context the Bloch-Wigner function arises as a special Yangian invariant in 4D. The bootstrap procedure for the box integral is naturally structured in algorithmic form. We then discuss the Yangian constraints for the six-point double box integral as well as for the related hexagon. For the latter we argue that the constraints are solved by a set of generalized Lauricella functions and we comment on complications in identifying the integral as a certain linear combination of these. Finally, we elaborate on the close relation to the Mellin-Barnes technique and argue that it generates Yangian invariants as sums of residues. *
We show that appropriately supersymmetrized smooth Maldacena-Wilson loop operators in N = 4 super Yang-Mills theory are invariant under a Yangian symmetry Y [psu(2, 2|4)] built upon the manifest superconformal symmetry algebra of the theory. The existence of this hidden symmetry is demonstrated at the one-loop order in the weak coupling limit as well as at leading order in the strong coupling limit employing the classical integrability of the dual AdS 5 × S 5 string description. The hidden symmetry generators consist of a canonical non-local second order variational derivative piece acting on the superpath, along with a novel local path dependent contribution. We match the functional form of these Yangian symmetry generators at weak and strong coupling and find evidence for an interpolating function. Our findings represent the smooth counterpart to the Yangian invariance of scattering superamplitudes dual to light-like polygonal super Wilson loops in the N = 4 super Yang-Mills theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.