Mutations that reduce the function of KCNQ2 channels cause neuronal hyperexcitability, manifested as epileptic seizures and myokymia. These channels are present in nodes of Ranvier in rat brain and nerve and have been proposed to mediate the slow nodal potassium current I(Ks). We have used immunocytochemistry, electrophysiology and pharmacology to test this hypothesis and to determine the contribution of KCNQ channels to nerve excitability in the rat. When myelinated nerve fibres of the sciatic nerve were examined by immunofluorescence microscopy using antibodies against KCNQ2 and KCNQ3, all nodes showed strong immunoreactivity for KCNQ2. The nodes of about half the small and intermediate sized fibres showed labelling for both KCNQ2 and KCNQ3, but nodes of large fibres were labelled by KCNQ2 antibodies only. In voltage-clamp experiments using large myelinated fibres, the selective KCNQ channel blockers XE991 (IC50 = 2.2 microm) and linopirdine (IC50 = 5.5 microm) completely inhibited I(Ks), as did TEA (IC50 = 0.22 mm). The KCNQ channel opener retigabine (10 microm) shifted the activation curve to more negative membrane potentials by -24 mV, thereby increasing I(Ks). In isotonic KCl 50% of I(Ks) was activated at -62 mV. The activation curve shifted to more positive potentials as [K+]o was reduced, so that the pharmacological and biophysical properties of I(Ks) were consistent with those of heterologously expressed homomeric KCNQ2 channels. The ability of XE991 to selectively block I(Ks) was further exploited to study I(Ks) function in vivo. In anaesthetized rats, the excitability of tail motor axons was indicated by the stimulus current required to elicit a 40% of maximal compound muscle action potential. XE991 (2.5 mg kg(-1) i.p.) eliminated all nerve excitability functions previously attributed to I(Ks): accommodation to 100 ms subthreshold depolarizing currents, the post-depolarization undershoot in excitability, and the late subexcitability after a single impulse or short trains of impulses. Due to reduced spike-frequency adaptation after XE991 treatment, 100 ms suprathreshold current injections generated long trains of action potentials. We conclude that the nodal I(Ks) current is mediated by KCNQ channels, which in large fibres of rat sciatic nerve appear to be KCNQ2 homomers.
Many organisms respond to noxious stimuli with defensive maneuvers. This is noted in the hornworm, Manduca sexta, as a defensive strike response. After tissue damage, organisms typically display sensitized responses to both noxious or normally innocuous stimuli. To further understand this phenomenon, we used novel in situ and in vitro preparations based on paired extracellular nerve recordings and videography to identify central and peripheral nerves responsible for nociception and sensitization of the defensive behavior in M. sexta. In addition, we used the in vivo defensive strike response threshold assayed with von Frey filaments to examine the roles N-methyl-D-aspartate receptor (NMDAR) and hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels play in this nociceptive sensitization using the inhibitors MK-801 and AP5 (NMDAR), and ivabradine and ZD7288 (HCN). Using our new preparations, we found that afferent activity evoked by noxious pinch in these preparations was conveyed to central ganglia by axons in the anterior- and lateral-dorsal nerve branches, and that sensitization induced by tissue damage was mediated centrally. Furthermore, sensitization was blocked by all inhibitors tested except the inactive isomer L-AP5, and reversed by ivabradine both in vivo and in vitro. Our findings suggest that M. sexta’s sensitization occurs through central signal amplification. Due to the relatively natural sensitization method and conserved molecular actions, we suggest that M. sexta may be a valuable model for studying the electrophysiological properties of nociceptive sensitization and potentially related conditions such as allodynia and hyperalgesia in a comparative setting that offers unique experimental advantages.
Background The hornworm Manduca sexta exhibits a defensive strike to noxious assaults, a response that is robust and is easily observed by experimenters. Von Frey filaments and methods typical for studying nociception in other animals were used to assess the strike response in M. sexta. New Methods A series of von Frey filaments was applied to the body wall in ascending order and the data generated were used to determine the strike threshold by (i) the up-and-down method, (ii) the first response method, and (iii) the simplified up-and-down order method (SUDO). The effect of a noxious pinch on strike threshold was assessed. Comparison with existing methods To our knowledge none of these methods has been used on M. sexta previously, making the use of the up-and-down and SUDO methods the first in an invertebrate. The use of the first response method has been used in other invertebrates, and the method appears equally suited to M. sexta. Results All three methods were successful in monitoring the threshold sensitivity to touch, which was lowered (sensitized) by tissue damage induced with a pinch. Sensitization lasted 19 h. Conclusions All three methods of assessing nociception were successfully applied to quantify the defensive strike response in M. sexta, although the SUDO method required empirical assessment of which filament to start the test sequence with. The results revealed both short- and long-term sensitization. These methods should prove to be useful for quantifying sensitization in M. sexta.
Widefield calcium imaging has recently emerged as a powerful experimental technique to record coordinated large-scale brain activity. These measurements present a unique opportunity to characterize spatiotemporally coherent structures that underlie neural activity across many regions of the brain. In this work, we leverage analytic techniques from fluid dynamics to develop a visualization framework that highlights features of flow across the cortex, mapping wavefronts that may be correlated with behavioural events. First, we transform the time series of widefield calcium images into time-varying vector fields using optic flow. Next, we extract concise diagrams summarizing the dynamics, which we refer to as FLOW (flow lines in optical widefield imaging) portraits . These FLOW portraits provide an intuitive map of dynamic calcium activity, including regions of initiation and termination, as well as the direction and extent of activity spread. To extract these structures, we use the finite-time Lyapunov exponent technique developed to analyse time-varying manifolds in unsteady fluids. Importantly, our approach captures coherent structures that are poorly represented by traditional modal decomposition techniques. We demonstrate the application of FLOW portraits on three simple synthetic datasets and two widefield calcium imaging datasets, including cortical waves in the developing mouse and spontaneous cortical activity in an adult mouse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.