Dysfunctional bone morphogenetic protein receptor-2 (BMPR2) signaling is implicated in the pathogenesis of pulmonary arterial hypertension (PAH). We used a transcriptional high-throughput luciferase reporter assay to screen 3,756 FDA-approved drugs and bioactive compounds for induction of BMPR2 signaling. The best response was achieved with FK506 (tacrolimus), via a dual mechanism of action as a calcineurin inhibitor that also binds FK-binding protein-12 (FKBP12), a repressor of BMP signaling. FK506 released FKBP12 from type I receptors activin receptor-like kinase 1 (ALK1), ALK2, and ALK3 and activated downstream SMAD1/5 and MAPK signaling and ID1 gene regulation in a manner superior to the calcineurin inhibitor cyclosporine and the FKBP12 ligand rapamycin. In pulmonary artery endothelial cells (ECs) from patients with idiopathic PAH, low-dose FK506 reversed dysfunctional BMPR2 signaling. In mice with conditional Bmpr2 deletion in ECs, low-dose FK506 prevented exaggerated chronic hypoxic PAH associated with induction of EC targets of BMP signaling, such as apelin. Low-dose FK506 also reversed severe PAH in rats with medial hypertrophy following monocrotaline and in rats with neointima formation following VEGF receptor blockade and chronic hypoxia. Our studies indicate that low-dose FK506 could be useful in the treatment of PAH. IntroductionIdiopathic pulmonary arterial hypertension (IPAH) is a rare disorder thought to develop following a genetic and/or environmental insult that triggers endothelial cell (EC) apoptosis, loss of distal vessels, and occlusive vascular remodeling (1). These pathological changes increase resistance to pulmonary flow and cause progressive right heart failure. Current therapies mainly include drugs with vasodilatory properties that improve cardiopulmonary function (2). However, the obliterative vascular pathology usually continues to progress (3), leaving heart-lung transplantation as the only option for many patients. Therefore, new approaches are needed that focus on activating cellular mechanisms to reverse vascular remodeling. One strategy could be to improve function of the bone morphogenetic protein receptor-2 (BMPR2) signaling pathway. Germline mutations causing loss of BMPR2 function are found in >80% of familial and approximately 20% of sporadic cases of IPAH (4, 5). Acquired somatic chromosomal abnormalities in the BMPR2 signaling pathway have also been described (6). The low penetrance of pulmonary arterial hypertension (PAH) found in nonaffected family members with a BMPR2 mutation has been attributed to a higher level of
Inhibition of cardiac late sodium current (late I Na ) is a strategy to suppress arrhythmias and sodium-dependent calcium overload associated with myocardial ischemia and heart failure. Current inhibitors of late I Na are unselective and can be proarrhythmic. This study introduces GS967 (6-[4-(trifluoromethoxy), a potent and selective inhibitor of late I Na , and demonstrates its effectiveness to suppress ventricular arrhythmias. The effects of GS967 on rabbit ventricular myocyte ion channel currents and action potentials were determined. Anti-arrhythmic actions of GS967 were characterized in ex vivo and in vivo rabbit models of reduced repolarization reserve and ischemia. GS967 inhibited Anemonia sulcata toxin II (ATX-II)-induced late I Na in ventricular myocytes and isolated hearts with IC 50 values of 0.13 and 0.21 mM, respectively. Reduction of peak I Na by GS967 was minimal at a holding potential of 2120 mV but increased at 280 mV. GS967 did not prolong action potential duration or the QRS interval. GS967 prevented and reversed proarrhythmic effects (afterdepolarizations and torsades de pointes) of the late I Na enhancer ATX-II and the I Kr inhibitor E-4031 in isolated ventricular myocytes and hearts. GS967 significantly attenuated the proarrhythmic effects of methoxamine1clofilium and suppressed ischemiainduced arrhythmias. GS967 was more potent and effective to reduce late I Na and arrhythmias than either flecainide or ranolazine. Results of all studies and assays of binding and activity of GS967 at numerous receptors, transporters, and enzymes indicated that GS967 selectively inhibited late I Na . In summary, GS967 selectively suppressed late I Na and prevented and/or reduced the incidence of experimentally induced arrhythmias in rabbit myocytes and hearts.
Peroxisome proliferator-activated receptor (PPAR)-gamma is reduced in pulmonary arteries (PAs) of patients with PA hypertension (PAH), and we reported that deletion of PPARgamma in smooth muscle cells (SMCs) of transgenic mice results in PAH. However, the sequelae of loss of PPARgamma in PA endothelial cells (ECs) are unknown. Therefore, we bred Tie2-Cre mice with PPARgamma(flox/flox) mice to induce EC loss of PPARgamma (Tie2 PPARgamma(-/-)), and we assessed PAH by right ventricular systolic pressure (RVSP), RV hypertrophy (RVH), and muscularized distal PAs in room air (RA), after chronic hypoxia (CH), and after 4 wk of recovery in RA (Rec-RA). The Tie2 PPARgamma(-/-) mice developed spontaneous PAH in RA with increased RVSP, RVH, and muscularized PAs vs. wild type (WT); both genotypes exhibited a similar degree of PAH following chronic hypoxia, but Tie2 PPARgamma(-/-) mice had more residual PAH compared with WT mice after Rec-RA. The Tie2 PPARgamma(-/-) vs. WT mice in RA had increased platelet-derived growth factor receptor-beta (PDGF-Rbeta) expression and signaling, despite an elevation in the PPARgamma target apolipoprotein E, an inhibitor of PDGF signaling. Inhibition of PDGF-Rbeta signaling with imatinib, however, was sufficient to reverse the PAH observed in the Tie2 PPARgamma(-/-) mice. Thus the disruption of PPARgamma signaling in EC is sufficient to cause mild PAH and to impair recovery from CH-induced PAH. Inhibition of heightened PDGF-Rbeta signaling is sufficient to reverse PAH in this genetic model.
Background Ranolazine is an antianginal drug that inhibits the cardiac late Na+ current (INa). The selectivity of ranolazine to block late INa relative to peak INa at rapid heart rates has not been determined, but is potentially important to drug efficacy and safety. Objective To quantify use-dependent block (UDB) of cardiac peak and late INa by ranolazine. Methods Wild-type (WT) and LQT3 mutation R1623Q channels were expressed in HEK293 cells and studied using whole-cell patch-clamp technique. Ranolazine (1–300 μM) caused tonic (0.1 Hz) and UDB (1, 2 and 5 Hz) of WT and R1623Q peak INa. The IC50 values for block WT and R1623Q peak INa at 0.1, 1, 2 and 5 Hz were 430, 260, 160 and 150μM, and 95, 78, 37 and 25μM, respectively. The IC50 values for block of R1623Q late INa at 0.1, 1, 2 and 5 Hz were 7.5, 7.3, 2.2 and 1.9 μM, respectively. Ranolazine (10 μM) caused a hyperpolarizing shift of WT and R1623Q peak INa steady-state inactivation without affecting steady-state activation, suggesting that ranolazine interacts with inactivated states of the channels. Ranolazine (30 μM) significantly slowed the recovery from inactivation of peak INa of both WT and R1623Q and late INa of R1623Q. Conclusion Ranolazine slowed recovery of late INa from inactivation and thus caused UDB of late INa. These data suggest that the effect of ranolazine to block late INa may be increased, and the selectivity to block late INa relative to peak INa may be retained, during tachycardia.
Expression of bone morphogenetic protein receptor 1A (BMPR1A) is attenuated in the lung vessels of patients with pulmonary arterial hypertension, but the functional impact of this abnormality is unknown. We ablated Bmpr1a in cardiomyocytes and vascular smooth muscle cells (VSMCs) by breeding mice possessing a loxP allele of Bmpr1a (Bmpr1a
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.