Human milk (HM) provides all nutrients to support an optimal growth and development of the neonate. The composition and structure of HM lipids, the most important energy provider, have an impact on the digestion, uptake and metabolism of lipids. In HM, the lipids are present in the form of dispersed fat globules: large fat droplets enveloped by a phospholipid membrane. Currently, infant milk formula (Control IMF) contains small fat droplets primarily coated by proteins. Recently, a novel IMF concept (Concept IMF) was developed with a different lipid architecture, Nuturis(®), comprising large fat droplets with a phospholipid coating. Confocal laser scanning microscopy (CLSM), with appropriate fluorescent probes, and transmission electron microscopy were used to determine and compare the interfacial composition and structure of HM fat globules, Concept IMF fat droplets and Control IMF fat droplets. The presence of a trilayer-structured HM fat globule membrane, composed of phospholipids, proteins, glycoproteins and cholesterol, was confirmed; in addition exosome-like vesicles are observed within cytoplasmic crescents. The Control IMF fat droplets had a thick protein-only interface. The Concept IMF fat droplets showed a very thin interface composed of a mixture of phospholipids, proteins and cholesterol. Furthermore, the Concept IMF contained fragments of milk fat globule membrane, which has been suggested to have potential biological functions in infants. By mimicking more closely the structure and composition of HM fat globules, this novel IMF concept with Nuturis(®) may have metabolic and digestive properties that are more similar to HM compared to Control IMF.
The bacterial species Staphylococcus aureus, including its methicillin-resistant variant (MRSA), finds its primary ecological niche in the human nose, but is also able to colonize the intestines and the perineal region. Intestinal carriage has not been widely investigated despite its potential clinical impact. This review summarizes literature on the topic and sketches the current state of affairs from a microbiological and infectious diseases' perspective. Major findings are that the average reported detection rate of intestinal carriage in healthy individuals and patients is 20% for S. aureus and 9% for MRSA, which is approximately half of that for nasal carriage. Nasal carriage seems to predispose to intestinal carriage, but sole intestinal carriage occurs relatively frequently and is observed in 1 out of 3 intestinal carriers, which provides a rationale to include intestinal screening for surveillance or in outbreak settings. Colonization of the intestinal tract with S. aureus at a young age occurs at a high frequency and may affect the host's immune system. The frequency of intestinal carriage is generally underestimated and may significantly contribute to bacterial dissemination and subsequent risk of infections. Whether intestinal rather than nasal S. aureus carriage is a primary predictor for infections is still ill-defined.
The RET receptor tyrosine kinase has essential roles in cell survival, differentiation, and proliferation. Oncogenic activation of RET causes the cancer syndrome multiple endocrine neoplasia type 2 (MEN 2) and is a frequent event in sporadic thyroid carcinomas. However, the molecular mechanisms underlying RET's potent transforming and mitogenic signals are still not clear. Here, we show that nuclear localization of Bcatenin is frequent in both thyroid tumors and their metastases from MEN 2 patients, suggesting a novel mechanism of RET-mediated function through the B-catenin signaling pathway. We show that RET binds to, and tyrosine phosphorylates, B-catenin and show that the interaction between RET and B-catenin can be direct and independent of cytoplasmic kinases, such as SRC. As a result of RETmediated tyrosine phosphorylation, B-catenin escapes cytosolic down-regulation by the adenomatous polyposis coli/ Axin/glycogen synthase kinase-3 complex and accumulates in the nucleus, where it can stimulate B-catenin-specific transcriptional programs in a RET-dependent fashion. We show that down-regulation of B-catenin activity decreases RET-mediated cell proliferation, colony formation, and tumor growth in nude mice. Together, our data show that a Bcatenin-RET kinase pathway is a critical contributor to the development and metastasis of human thyroid carcinoma.
Activating mutations in the RET proto-oncogene are associated with both familial and sporadic medullary thyroid carcinoma (MTC) development; however, the genetic mechanisms underlying MTC tumorigenesis remain largely unknown. Recently, we have identified somatic inactivating mutations in the cell cycle inhibitor gene P18 in human MTC, which coincided with activating RET mutations, suggesting a role for loss of P18 in combination with oncogenic RET in the multistep process of MTC development. Therefore, we crossed transgenic mice expressing oncogenic RET (RET2B) with mice lacking p18 (and p27, another cell cycle inhibitor) and monitored MTC development. RET2B;p18 +/À mice and RET2B;p18 À/À mice developed MTC with a highly increased incidence compared with their corresponding single mutant littermates. In addition, expression of oncogenic RET causes an earlier age of onset and larger MTCs in p18;p27 +/À mice. In a subset of MTCs of RET2B;p18Ink4c expression was completely lost. This loss of p18 Ink4c expression correlated with higher proliferation rates as well as with larger MTCs, indicating that loss of p18 in combination with oncogenic RET not only increases the risk for MTC development but also enhances MTC progression. Our data strongly indicate that oncogenic RET and loss of p18 cooperate in the multistep tumorigenesis of MTC. [Cancer Res 2008;68(5):1329-37]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.