The capacity for some pathogens to jump into different host-species populations is a major threat to public health and food security. Staphylococcus aureus is a multi-host bacterial pathogen responsible for important human and livestock diseases. Here, using a population-genomic approach, we identify humans as a major hub for ancient and recent S. aureus host-switching events linked to the emergence of endemic livestock strains, and cows as the main animal reservoir for the emergence of human epidemic clones. Such host-species transitions are associated with horizontal acquisition of genetic elements from host-specific gene pools conferring traits required for survival in the new host-niche. Importantly, genes associated with antimicrobial resistance are unevenly distributed among human and animal hosts, reflecting distinct antibiotic usage practices in medicine and agriculture. In addition to gene acquisition, genetic diversification has occurred in pathways associated with nutrient acquisition, implying metabolic remodelling after a host switch in response to distinct nutrient availability. For example, S. aureus from dairy cattle exhibit enhanced utilization of lactose-a major source of carbohydrate in bovine milk. Overall, our findings highlight the influence of human activities on the multi-host ecology of a major bacterial pathogen, underpinned by horizontal gene transfer and core genome diversification.
SummaryIn trying to identify genetic loci involved in the regulation of cap5 genes in Staphylococcus aureus , we isolated a transposon mutant that exhibited a growth defect, enhanced autolysis and increased sensitivity to Triton X-100 and penicillin, attributable in part to increased murein hydrolase activity. Analysis of the chromosomal sequence flanking the transposon insertion site revealed that the gene disrupted in the mutant encodes an open reading frame of 147 amino acids. We named this gene rat , which stands for regulator of autolytic activity. Sequence analysis indicated that Rat is homologous to the MarR and, to a lesser extent, the SarA protein families. Mutations in rat resulted in decreased expression of known autolytic regulators lytSR , lrgAB and arlRS . Gel shift studies indicated that Rat binds to the lytRS and arlRS promoters, thus confirming Rat as a DNA-binding protein to these known repressors of autolytic activity. As anticipated, rat appears to be a negative regulator of autolysin genes including lytM and lytN . These data suggest that the rat gene product is an important regulator of autolytic activity in S. aureus .
The bacterial species Staphylococcus aureus, including its methicillin-resistant variant (MRSA), finds its primary ecological niche in the human nose, but is also able to colonize the intestines and the perineal region. Intestinal carriage has not been widely investigated despite its potential clinical impact. This review summarizes literature on the topic and sketches the current state of affairs from a microbiological and infectious diseases' perspective. Major findings are that the average reported detection rate of intestinal carriage in healthy individuals and patients is 20% for S. aureus and 9% for MRSA, which is approximately half of that for nasal carriage. Nasal carriage seems to predispose to intestinal carriage, but sole intestinal carriage occurs relatively frequently and is observed in 1 out of 3 intestinal carriers, which provides a rationale to include intestinal screening for surveillance or in outbreak settings. Colonization of the intestinal tract with S. aureus at a young age occurs at a high frequency and may affect the host's immune system. The frequency of intestinal carriage is generally underestimated and may significantly contribute to bacterial dissemination and subsequent risk of infections. Whether intestinal rather than nasal S. aureus carriage is a primary predictor for infections is still ill-defined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.