In the food industry, a very large potential of data ecosystems is seen, in which data is understood, exchanged and monetized as an economic asset. However, despite the enormous economic potential, companies in the food industry continue to rely on traditional, product-oriented business models. Existing data in the value chain of industrial food production, e. g., in harvesting, logistics, and production processes, is primarily used for internal optimization and is not monetized in the form of data products. Especially the pricing of data products is a key challenge for data-based business models due to their special characteristics compared to conventional, analog offerings and multiple design options. The goal of this work is therefore to solve this issue by developing a framework that allows the identification of pricing models for data products in the industrial food production. For this purpose, following the procedure of typology formation, essential design parameters and the respective characteristics are derived. Furthermore, three types for pricing models of data products are shown. The results will serve not only stakeholders in the food industry but also manufacturing companies in general as input for an orientation of their data-based business models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.