Crude glycerol is the primary byproduct of the biodiesel industry. Producing docosahexaenoic acid (DHA, 22:6 n-3) through fermentation of the alga Schizochytrium limacinum on crude glycerol provides a unique opportunity to utilize a large quantity of this byproduct. The objective of this work is to investigate the effects of impurities contained in the crude glycerol on DHA production and algal biomass composition. Crude glycerol streams were obtained from different biodiesel refineries. All of the glycerol samples contained methanol, soaps, and various elements including calcium, phosphorus, potassium, silicon, sodium, and zinc. Both methanol and soap were found to negatively influence algal DHA production; these two impurities can be removed from culture medium by evaporation through autoclaving (for methanol) and by precipitation through pH adjustment (for soap). The glycerol-derived algal biomass contained 45-50% lipid, 14-20% protein, and 25% carbohydrate, with 8-13% ash content. Palmitic acid (C16:0) and DHA were the two major fatty acids in the algal lipid. The algal biomass was rich in lysine and cysteine, relative to many common feedstuffs. Elemental analysis by inductively coupled plasma showed that boron, calcium, copper, iron, magnesium, phosphorus, potassium, silicon, sodium, and sulfur were present in the biomass, whereas no heavy metals (such as mercury) were detected in the algal biomass. Overall, the results show that crude glycerol was a suitable carbon source for algal fermentation. The crude glycerol-derived algal biomass had a high level of DHA and a nutritional profile similar to that of commercial algal biomass, suggesting a great potential for using crude glycerol-derived algae in omega-3-fortified food or feed.
Economic considerations require the use of inexpensive feedstocks for the fermentative production of moderate-value products. Our previous work has shown that peptones capable of supporting the growth of various microorganisms can be produced from inexpensive animal proteins, including meat and bone meal, feather meal, and blood meal, through alkaline or enzymatic hydrolysis. In this work, we explore how these experimental peptones compare to commercial peptones in terms of performance characteristics other than chemical make-up; these characteristics can impact fermentation operating cost. It is shown that experimental peptone powders produced through enzymatic hydrolysis are highly hygroscopic and that their physical form is not stable to humid storage conditions; those produced through alkaline hydrolysis and commercial peptones are less hygroscopic. When used in growth medium, all peptones contribute haze to the solution; experiments show that the source of haze is different when using enzyme- versus alkali-hydrolyzed peptones. Alkali-hydrolyzed peptones and all peptones made from blood meal are stronger promoters of media foaming than the commercial peptones; some enzyme-hydrolyzed peptones support very little foam formation and are superior to the commercial peptones in this sense. Alkali-hydrolyzed peptones are roughly equivalent to commercial peptones in the coloration they contribute to media, while enzyme-hydrolyzed peptones contribute intense coloration to media. No peptone caused a significant change in the viscosity of media. The experimental peptones studied here may be acceptable low-cost substitutes for commercial peptones, but none is equivalent to the commercial products in all respects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.