The Sloan Extension for Galactic Understanding and Exploration (SEGUE) Survey obtained ≈240,000 moderateresolution (R ∼ 1800) spectra from 3900 Å to 9000 Å of fainter Milky Way stars (14.0 < g < 20.3) of a wide variety of spectral types, both main-sequence and evolved objects, with the goal of studying the kinematics and populations of our Galaxy and its halo. The spectra are clustered in 212 regions spaced over three quarters of the sky. Radial velocity accuracies for stars are σ (RV) ∼ 4 km s −1 at g < 18, degrading to σ (RV) ∼ 15 km s −1 at g ∼ 20. For stars with signal-to-noise ratio >10 per resolution element, stellar atmospheric parameters are 4377 4378 YANNY ET AL.Vol. 137 estimated, including metallicity, surface gravity, and effective temperature. SEGUE obtained 3500 deg 2 of additional ugriz imaging (primarily at low Galactic latitudes) providing precise multicolor photometry (σ (g, r, i) ∼ 2%), (σ (u, z) ∼ 3%) and astrometry (≈0 .1) for spectroscopic target selection. The stellar spectra, imaging data, and derived parameter catalogs for this survey are publicly available as part of Sloan Digital Sky Survey Data Release 7.
The Sloan Digital Sky Survey (SDSS) started a new phase in 2008 August, with new instrumentation and new surveys focused on Galactic structure and chemical evolution, measurements of the baryon oscillation feature in the clustering of galaxies and the quasar Lyα forest, and a radial velocity search for planets around ∼8000 stars. This paper describes the first data release of SDSS-III (and the eighth counting from the beginning of the SDSS). The release includes five-band imaging of roughly 5200 deg 2 in the southern Galactic cap, bringing the total footprint of the SDSS imaging to 14,555 deg 2 , or over a third of the Celestial Sphere. All the imaging data have been reprocessed with an improved sky-subtraction algorithm and a final, self-consistent photometric recalibration and flat-field determination. This release also includes all data from the second phase of the Sloan Extension for Galactic Understanding and Exploration (SEGUE-2), consisting of spectroscopy of approximately 118,000 stars at both high and low Galactic latitudes. All the more than half a million stellar spectra obtained with the SDSS spectrograph have been reprocessed through an improved stellar parameter pipeline, which has better determination of metallicity for high-metallicity stars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.