Two-hundred-and-thirty-six isolates were collected from fresh flowers, bees and bee-hives. Of these, 20 isolates preferred D-fructose as carbon source, produced lactic acid and acetic acid but trace amounts of ethanol and were classified as fructophilic. Poor growth was recorded when strains were incubated anaerobically in the presence of D-glucose as sole carbon source. Good growth was, however, recorded when D-glucose was metabolized in the presence of external electron acceptors such as fructose, pyruvate and oxygen. Nineteen of the strains were classified as Lactobacillus kunkeei and one as Lactobacillus brevis based on phenotypic characteristics, 16S rRNA sequences, recA sequences and DNA homology. This is the first description of a fructophilic strain of L. brevis.
Copper particles were incorporated into nanofibers during the electrospinning of poly-D,L-lactide (PDLLA) and poly(ethylene oxide) (PEO). The ability of the nanofibers to prevent Pseudomonas aeruginosa PA01 and Staphylococcus aureus (strain Xen 30) to form biofilms was tested. Nanofibers containing copper particles (Cu-F) were thinner (326 ± 149 nm in diameter), compared to nanofibers without copper (CF; 445 ± 93 nm in diameter). The crystalline structure of the copper particles in Cu-F was confirmed by X-ray diffraction (XRD). Copper crystals were encapsulated, but also attached to the surface of Cu-F, as shown scanning transmission electron microscopy (STEM) and transmission electron microscopy (TEM), respectively. The copper particles had no effect on the thermal degradation and thermal behaviour of Cu-F, as shown by thermogravimetric analysis (TGA) and differential scanning calorimeter (DSC). After 48 h in the presence of Cu-F, biofilm formation by P. aeruginosa PA01 and S. aureus Xen 30 was reduced by 41% and 50%, respectively. Reduction in biofilm formation was ascribed to copper released from the nanofibers. Copper-containing nanofibers may be incorporated into wound dressings.
Silver nanoparticles (AgNPs), synthesized using N,N-dimethylformamide (DMF), were electrospun with nisin in a 50:50 blend of 24 % (w/v) poly(D,L-lactide) (PDLLA) and poly(ethylene oxide) (PEO). Addition of AgNPs decreased the average diameter of the nanofibers [silver nanofibers (SF)] from 588 ± 191 to 281 ± 64 nm, or to 288 ± 63 nm when nisin was co-spun with AgNPs. Nanofibers containing AgNO3 (SF) had a beads-on-string structure, whereas nanofibers with AgNPs and nisin [silver plus nisin nanofibers (SNF)], nanofibers with only nisin [nisin nanofibers (NF)], and nanofibers without AgNPs and nisin [control nanofibers] had a uniform structure. The irregular topography was confirmed by atomic force microscopy. No interactions occurred between silver, nisin, PDLLA, and PEO, as confirmed with Fourier transform infrared spectroscopy. Most of the AgNPs (18 ± 2.8 ppm) and nisin (78.1 ± 1.2 µg/ml) were released within the first 2 h. SF and SNF inhibited the growth of gram-positive and gram-negative bacteria, whereas NF failed to inhibit gram-negative bacteria. A wound dressing with broad-spectrum antimicrobial activity may be developed by the incorporation of nanofibers containing a combination of AgNPs and nisin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.