A new method of seeding convective clouds for the purpose of augmenting rainfall is being developed in South Africa. Flares that produce small salt particles (0.5-m mean diameter) are attached to the trailing edge of the wings of seeding aircraft and ignited in updrafts below the cloud base of convective storms. This method of delivery overcomes most of the difficulties encountered in the handling and the use of hygroscopic materials, difficulties that made seeding with ice nuclei (AgI) a more attractive option. The research that has led to the development of this new technique was prompted by an encounter with a storm with dramatically altered microphysics that was growing over a Kraft paper mill in the research area. Hygroscopic seeding flares were subsequently developed, and seeding trials began in October 1990. Successful seeding trials quickly led to the design and execution of a randomized convective cloud-seeding experiment, the results of which show convincing evidence of increases in the radar-measured rain mass from seeded storms when compared to the control or unseeded storms. Heightened reflectivities aloft seen by the real-time storm-tracking software and observed in the exploratory analysis raises the possibility of developing a radar-measured seeding algorithm that can recognize in almost real time a successful convective seeding event. The implications of such a development would have far-reaching effects on the conduct of future convective cloud-seeding experiments and operations. The authors' seeding hypothesis postulates that the hygroscopic seeding at cloud base accelerates the growth of large hydrometeors in the treated clouds, which harvest more of the available supercooled water before it is expelled into the anvils by the strong updrafts that are a characteristic of the local storms, thereby increasing the efficiency of the rainfall process. The validity of this hypothesis is supported by microphysical measurements made from an instrumented Learjet and the results of the randomized experiment, both of which are supported by numerical condensation-coalescence calculations. There are also indications that the hygroscopic seeding may have an impact upon the dynamics of the treated storms, lengthening their lifetimes by strengthening the coupling of the updraft-downdraft storm propagation mechanism. The apparent sensitivity of rainfall in convective clouds to the aerosol concentration, size, and chemical content may have climatic implications. Higher concentrations of small aerosols produced by pollution, biomass burning, etc., could adversely affect the efficiency of the rainfall process. The negative consequences of this effect would be magnified in regions that depend upon convective storms to provide the bulk of their annual rainfall.
Using data since 1882 the relationship between summer rainfall over South Africa and the ENSO phenomenon is investigated. A strong association between Warm Events and dry spells, and between Cold Events and wet spells is discussed. The temporal and spatial variability in the relationship is presented. Rainfall during December and March correlates significantly with the previous winter's SO1 but rainfall during the mid-summer months, January and February, shows much weaker correlation. A significant relationship is detected between the summer rainfall and mean monthly geopotentials as well as the 850-500 hPa thermal wind over the central parts of South Africa. Distinctions are made between the dominant rain-producing systems with regard to these parameters. During January and February, when the SO/rainfall relationship is fairly weak, rainfall develops in a predominantly quasi-barotropic circulation. On the other hand, during December and March the most significant SO/rainfall correlation coincides with a shift to baroclinic systems. Analysis suggests that a clear signal of the SO can be observed in the phase and amplitude of summertime synoptic-scale baroclinic systems over the South African region.
The interruption of essential water services in Cape Town, foreshadowed as ‘Day Zero,’ is one of several recent examples of urban water scarcity connected to the language of urgent climate change. Johannesburg, with its larger and growing population and deeply enmeshed water and power infrastructures, is currently regarded as one drought away from disaster. As a result, the lessons to be learned from Cape Town are under active debate in South Africa. We used Q method to examine the structure of perspectives on urban water scarcity among South African water management practitioners. Our results illustrate distinct viewpoints differentiated by focus on corruption and politics, supply and demand systems, and social justice concerns as well as a distinct cohort of pragmatic optimists. Our analysis underscores the significance of public trust and institutional effectiveness, regardless of otherwise sound policy or infrastructure tools. As practitioners explicitly connect domains of competency to solvable and critical problems, integrated systems approaches will require deliberate interventions. Furthermore, urban water crises exacerbate and are exacerbated by existing experiences of racial and economic inequality, but this effect is masked by focus on demand management of average per capita water consumption and characterization of water scarcity as ‘the new normal.’
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.