Bundle recommendation aims to recommend a bundle of items for a user to consume as a whole. Existing solutions integrate useritem interaction modeling into bundle recommendation by sharing model parameters or learning in a multi-task manner, which cannot explicitly model the affiliation between items and bundles, and fail to explore the decision-making when a user chooses bundles. In this work, we propose a graph neural network model named BGCN (short for Bundle Graph Convolutional Network) for bundle recommendation. BGCN unifies user-item interaction, user-bundle interaction and bundle-item affiliation into a heterogeneous graph. With item nodes as the bridge, graph convolutional propagation between user and bundle nodes makes the learned representations capture the item level semantics. Through training based on hard-negative sampler, the user's fine-grained preferences for similar bundles are further distinguished. Empirical results on two real-world datasets demonstrate the strong performance gains of BGCN, which outperforms the state-of-the-art baselines by 10.77% to 23.18%.
Accurate, real-time and fine-spatial population distribution is crucial for urban planning, government management, and advertisement promotion. Limited by technics and tools, we rely on the census to obtain this information in the past, which is coarse and costly. The popularity of mobile phones gives us a new opportunity to investigate population estimation. However, real-time and accurate population estimation is still a challenging problem because of the coarse localization and complicated user behaviors. With the help of the passively collected human mobility and locations from the mobile networks including call detail records and mobility management signals, we develop a bimodal model beyond the prior work to better estimate real-time population distribution at metropolitan scales. We discuss how the estimation interval, space granularity, and data type will influence the estimation accuracy, and find the data collected from the mobility management signals with the 30 min estimation interval performs better which reduces the population estimation error by 30% in terms of Root Mean Square Error (RMSE). These results show us the great potential of using bimodal model and mobile phone data to estimate real-time population distribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.