International audienceIn this paper, we address the problem of estimating and removing non-uniform motion blur from a single blurry image. We propose a deep learning approach to predicting the probabilistic distribution of motion blur at the patch level using a convolutional neural network (CNN). We further extend the candidate set of motion kernels predicted by the CNN using carefully designed image rotations. A Markov random field model is then used to infer a dense non-uniform motion blur field enforcing motion smoothness. Finally, motion blur is removed by a non-uniform de-blurring model using patch-level image prior. Experimental evaluations show that our approach can effectively estimate and remove complex non-uniform motion blur that is not handled well by previous approaches
Temporal action proposal generation is an important yet challenging problem, since temporal proposals with rich action content are indispensable for analysing real-world videos with long duration and high proportion irrelevant content. This problem requires methods not only generating proposals with precise temporal boundaries, but also retrieving proposals to cover truth action instances with high recall and high overlap using relatively fewer proposals. To address these difficulties, we introduce an effective proposal generation method, named Boundary-Sensitive Network (BSN), which adopts "local to global" fashion. Locally, BSN first locates temporal boundaries with high probabilities, then directly combines these boundaries as proposals. Globally, with Boundary-Sensitive Proposal feature, BSN retrieves proposals by evaluating the confidence of whether a proposal contains an action within its region. We conduct experiments on two challenging datasets: ActivityNet-1.3 and THUMOS14, where BSN outperforms other state-of-the-art temporal action proposal generation methods with high recall and high temporal precision. Finally, further experiments demonstrate that by combining existing action classifiers, our method significantly improves the state-of-the-art temporal action detection performance.
Compressive sensing (CS) is an effective approach for fast Magnetic Resonance Imaging (MRI). It aims at reconstructing MR images from a small number of under-sampled data in k-space, and accelerating the data acquisition in MRI. To improve the current MRI system in reconstruction accuracy and speed, in this paper, we propose two novel deep architectures, dubbed ADMM-Nets in basic and generalized versions. ADMM-Nets are defined over data flow graphs, which are derived from the iterative procedures in Alternating Direction Method of Multipliers (ADMM) algorithm for optimizing a general CS-based MRI model. They take the sampled k-space data as inputs and output reconstructed MR images. Moreover, we extend our network to cope with complex-valued MR images. In the training phase, all parameters of the nets, e.g., transforms, shrinkage functions, etc., are discriminatively trained end-to-end. In the testing phase, they have computational overhead similar to ADMM algorithm but use optimized parameters learned from the data for CS-based reconstruction task. We investigate different configurations in network structures and conduct extensive experiments on MR image reconstruction under different sampling rates. Due to the combination of the advantages in model-based approach and deep learning approach, the ADMM-Nets achieve state-of-the-art reconstruction accuracies with fast computational speed.
Temporal action detection is a very important yet challenging problem, since videos in real applications are usually long, untrimmed and contain multiple action instances. This problem requires not only recognizing action categories but also detecting start time and end time of each action instance. Many state-of-the-art methods adopt the "detection by classification" framework: first do proposal, and then classify proposals. The main drawback of this framework is that the boundaries of action instance proposals have been fixed during the classification step. To address this issue, we propose a novel Single Shot Action Detector (SSAD) network based on 1D temporal convolutional layers to skip the proposal generation step via directly detecting action instances in untrimmed video. On pursuit of designing a particular SSAD network that can work effectively for temporal action detection, we empirically search for the best network architecture of SSAD due to lacking existing models that can be directly adopted. Moreover, we investigate into input feature types and fusion strategies to further improve detection accuracy. We conduct extensive experiments on two challenging datasets: THUMOS 2014 and MEXaction2. When setting Intersection-over-Union threshold to 0.5 during evaluation, SSAD significantly outperforms other state-of-the-art systems by increasing mAP from 19.0% to 24.6% on THUMOS 2014 and from 7.4% to 11.0% on MEXaction2.Comment: ACM Multimedia 201
Single image rain removal is a typical inverse problem in computer vision. The deep learning technique has been verified to be effective for this task and achieved state-of-theart performance. However, previous deep learning methods need to pre-collect a large set of image pairs with/without synthesized rain for training, which tends to make the neural network be biased toward learning the specific patterns of the synthesized rain, while be less able to generalize to real test samples whose rain types differ from those in the training data. To this issue, this paper firstly proposes a semi-supervised learning paradigm toward this task. Different from traditional deep learning methods which only use supervised image pairs with/without synthesized rain, we further put real rainy images, without need of their clean ones, into the network training process. This is realized by elaborately formulating the residual between an input rainy image and its expected network output (clear image without rain) as a specific parametrized rain streaks distribution. The network is therefore trained to adapt real unsupervised diverse rain types through transferring from the supervised synthesized rain, and thus both the short-of-training-sample and bias-to-supervised-sample issues can be evidently alleviated. Experiments on synthetic and real data verify the superiority of our model compared to the state-of-the-arts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.