Previous studies have shown that long noncoding RNAs (lncRNAs) show a highly tissue‐ and disease‐specific expression pattern and that they regulate the expression of neighboring genes. Because lncRNAs have been shown to be secreted into the general circulation, they may be used as diagnostic tools for some diseases. Primary ovarian insufficiency (POI) is a disease in which women have menstrual cessation before the age of 40, accompanied by elevated follicle stimulating hormone and decreased estrogen levels. In this study, ovarian cortical tissues from five women with normal menstrual cycles and from five POI patients were used for next‐generation RNA sequencing. We found 20 differentially expressed lncRNAs with 12 upregulated and eight downregulated lncRNAs in cortical tissues of POI ovaries, compared with normal controls (fold change ≥ 2 and false discovery rate[FDR] ≤ 0.05). We also found 52 differentially expressed messenger RNA transcripts, with 33 upregulated and 19 downregulated ones (foldchange ≥ 2 and FDR ≤ 0.05). Functional annotation showed that these differentially expressed transcripts were associated with follicular development and granulosa cell function. Thirteen differentially expressed lncRNAs and their targeted neighboring transcripts were coregulated in ovarian cortical tissues, including lnc‐ADAMTS1–1:1/ADAMTS1, lnc‐PHLDA3–3:2/CSRP1, lnc‐COL1A1–5:1/COL1A1, lnc‐SAMD14–5:3/COL1A1, and lnc‐GULP1–2:1/COL3A1. Furthermore, serum levels of these lncRNAs in POI patients were significantly different from those in normal patients ( p < 0.05), and expression differences were consistent with those in ovarian cortical tissues. This study showed that key lncRNAs were differentially expressed in both ovarian cortical tissues and serum samples between women with normal menstrual cycles and POI patients. Further studies on the regulation of ovarian lncRNAs during follicular development are critical in understanding the etiologies of POI. Analyses of lncRNA expression in serum samples might provide a basis for early diagnosis and treatment of POI.
A disintegrin and metalloproteinase with thrombospondin motifs 1 (ADAMTS1) is an extracellular matrix metalloproteinase that plays an important role in the process of ovulation. According to previous studies, the expression level of ADAMTS1 in the granulosa cells of polycystic ovarian syndrome (PCOS) patients and the mechanism for regulating oocyte quality and embryonic development potential are still unclear. Our research clarified that ADAMTS1 was significantly increased in granulosa cells of PCOS patients as compared to ovulatory controls. After silencing ADAMTS1 in granulosa cells, cell proliferation and E2 secretion were significantly inhibited, which may be related to the down-regulation of B-cell lymphoma 2 (Bcl2) family genes and key genes involved in E2 synthesis. Through retrospective analysis of the clinical data, it was found that the expression level of ADAMTS1 was significantly positively correlated to the oocyte maturation rate and good-quality embryo rate in PCOS patients. The downregulation of ADAMTS1 in primary granulosa cells lead to the changes in the expression of marker genes for oocyte and embryonic quality. By using immunofluorescence staining, it was found ADAMTS1 was expressed in various stages of pre-implantation embryo but its expression level gradually decreases with the development of the embryo. In addition, the silence of ADAMTS1 in 3PN zygotes significantly prolonged the development time of the zygote to the morula stage. This is, to our knowledge, the first time to explored the mechanism by which ADAMST1 is involved in affecting the quality of oocytes and embryonic development potential, which will provide new evidence for further understanding of the follicular microenvironment and embryo development.
Mammalian ovarian follicular development is an intricate, elaborate, and wellorganized phenomenon regulated by various signaling pathways; however, the underlying mechanism remains unclear. Mammalian sirtuins (sirtuin 1 to sirtuin 7) are a group of NAD +-dependent deacetylases implicated in various physiological processes including cell proliferation, apoptosis, cell cycle progression, and insulin signaling. Mammalian ovarian sirtuins have been studied using adult and aged bovine, porcine, and murine models. However, limited information is available regarding their precise expression patterns and the localization of follicle development in mice. This study aimed to assess the dynamic expression and localization of all seven sirtuins in early postnatal mouse ovaries through real-time polymerase chain reaction analysis and immunohistochemistry, respectively. During postnatal ovarian follicle development, sirtuin 1, sirtuin 4, and sirtuin 6 were downregulated compared with those in 1-day postnatal mouse ovaries (p < .05), indicating that these three sirtuin genes may be markers of follicular development. Combining their localization in granulosa cells through immunohistochemical studies, sirtuin 1, sirtuin 4, and sirtuin 6 are suggested to play negative regulatory roles in mammal ovarian follicular granulosa cell development. Furthermore, we found that sirtuin 2 (p < .05) and sirtuin 7 (p < .05) mRNA were constantly upregulated relative to sirtuin 1, although limited information is available regarding sirtuin 7. Among all sirtuins in mouse ovaries, sirtuin 1 was relatively and steadily downregulated. Upon sirtuin 1 overexpression in 1-day postnatal mouse ovaries via sirtuin 1-harboring adenoviruses in vitro, the emergence of primary follicles was delayed, as was the emergence of secondary follicles in 4-day postnatal ovaries. Further studies on KGN cell lines reported that interfering with sirtuin 1 expression in granulosa cell significantly affected granulosa cell proliferation and the expression of mitochondrial genes. This study presents the first systemic analysis of dynamic patterns of sirtuin family expression in early postnatal mice ovaries, laying the foundation for further studies on less discussed sirtuin subtypes, such as sirtuin 5 and sirtuin 7.
Backgrounds Long non-coding RNA is a novel group of non-protein coding transcripts over 200 nt in length. Recent studies have found that they are widely involved in many pathological and physiological processes. In our previous study, we found that lnc-GULP1–2:1 was significantly down-regulated in the ovarian cortical tissue of patients with primary ovarian insufficiency and predicted that lnc-GULP1–2:1 has a regulatory effect on COL3A1. Results In this study, we found that lnc-GULP1–2:1 was mainly localized in the cytoplasm of luteinized granulosa cells. The expression of lnc-GULP1–2:1 was lower in patients with diminished ovarian reserve but substantially elevated in patients with polycystic ovary syndrome. Overexpression of lnc-GULP1–2:1 in KGN cells significantly inhibited cell proliferation, likely through cell cycle related genes CCND2 and p16. Moreover, lnc-GULP1–2:1 expression was positively correlated with the level of COL3A in luteinized granulosa cells from patients with different ovarian functions as well as in multiple cell lines. Overexpression of lnc-GULP1–2:1 in KGN cells promoted the expression of COL3A1 and its translocation into the nucleus. Consistently, silencing COL3A1 in KGN cells also significantly inhibited cell proliferation. Conclusions Lnc-GULP1–2:1 affects the proliferation of granulosa cells by regulating the expression and localization of COL3A1 protein, and may participate in the regulation of ovarian follicle development. This study will provide new insight into molecular mechanisms underlying ovarian follicular development, which will help generate novel diagnostic and therapeutic strategies for diseases related to ovarian follicular development disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.