A model is proposed regarding the polarization of dispersed metallic conductors (e.g., pyrite and magnetite) in porous media free of redox-active ionic species in the pore water. We studied two cases corresponding to having a background material with or without chargeability. The model was based on the polarization mechanism of a single particle using well-established bounds for the reflection coefficient entering the definition of the dipole moment of the metallic grains. We used the Maxwell-Clausius-Mossotti mixing equation to obtain the complex conductivity of the mixture of dispersed metallic particles in the background porous material composed of the pore water and the insulating grains coated by an electric double-layer. This equation can be generalized to a mixture of various types of metallic particles (with their own properties) dispersed in the background porous material. Our model led to a very simple linear relationship between the chargeability and the volume content of metallic particles in the material. In addition, the chargeability depended weakly only on the shape of the spheroidal metallic particles as long as their orientation was random. The relaxation time defined from the phase peak frequency related to the diffusion coefficient of the [Formula: see text]- and [Formula: see text]-charge carriers in the metallic particles. This diffusion coefficient was consistent with the mobility of the charge carriers derived from theoretical considerations or electric conductivity measurements. In the presence of a polarizable background (e.g., a clayey matrix), we found that the total chargeability of the material can be determined from the chargeability of the metallic particles and the chargeability of the background material.
The increasing prevalence of dyslipidemia has become a worldwide public health problem, and the prevalence varies widely according to socioeconomic, cultural and ethnic characteristics. Chongqing has experienced rapid economic development and is now the economic center of Southwestern China. There are scant data on serum lipid profile of residents in Chongqing, the largest municipality directly under the Central Government in China. We conducted a cross-sectional study in a representative sample of 5375 residents of Chongqing, aged ≥18 years, and estimated the prevalence of dyslipidemia and its associated risk factors. According to the National Cholesterol Education Program-Adult Treatment Panel III criteria, the age-standardized prevalence of dyslipidemia was 35.5% (34.4% among men and 37.6% among women). Among the 2009 patients with dyslipidemia, 44.2% had isolated hypertriglyceridemia, 14.7% had isolated hypercholesterolemia, 13.2% had mixed hyperlipidemia, and 28.0% had isolated low high-density lipoprotein cholesterol. The peak prevalence of dyslipidemia in men was between 30 and 39 years (48.2%), and then declined gradually; in women, the prevalence of dyslipidemia increased with age, with the peak prevalence occurring after age 60 (46.3%). Multivariable logistic regression analysis revealed that dyslipidemia was associated with age, education level, physical activity, obesity and central obesity for both men and women. In conclusion, the results indicated dyslipidemia, particularly hypertriglyceridemia and low high-density lipoprotein cholesterol, are very common in Chongqing. To prevent dyslipidemia, it is essential to conduct appropriate intervention programs aimed at risk factor reduction and implement routine screening programs for blood lipid levels in Chongqing, China.
We have derived a set of new relationships describing polarization parameters in porous materials with disseminated particles made of a semiconductor, such as pyrite or magnetite. We have compared various predictions of this model to a broad set of experimental data. The chargeability was found to be controlled only by the volume fraction of metallic particles in agreement with the experimental data. The relaxation time, defined from the peak frequency of the phase, was observed to be proportional to the square of the size of the metallic particles and was independent of the salinity of the pore water solution. The relationship between the peak frequency and the grain size could be used to determine the diffusion coefficient of the [Formula: see text]- and [Formula: see text]-charge carriers in the semiconductor. This diffusion coefficient was consistent with the mobility of the charge carriers derived from theoretical considerations or electric-conductivity measurements. The resistivity of a mixture of a porous matrix characterized by a low-chargeability and dispersed semiconductors does not depend on the content of metallic grains, as long as the grains are below a percolation threshold (< 22 vol.%). Various experiments were performed using magnetite and pyrite at different grain sizes, weight fractions, and with/without porous materials (i.e., suspended in agar gel). These data were used to test some additional aspects of the model. We found excellent agreement between the model predictions and these experimental data.
[1] This paper investigates optimal sampling times of drawdowns for the analysis of hydraulic tomography (HT) survey. The investigation was carried out by analyzing the spatial and temporal evolution of cross-correlations between the head responses at an observation well and transmissivity (T) and storage coefficient (S) properties during a pumping test in homogeneous and heterogeneous aquifers. The analysis shows that the cross-correlation between the head and S values is limited to the region between the observation and the pumping well in the aquifers: It reaches the highest value near the early time (t m ), and decays to zero afterwards. The time t m is approximately equal to the time t 0 at which the extrapolated drawdown from the first straight line portion of an observed drawdown-log time plot becomes zero. At early times, the high cross-correlation between the head and T is confined to the region between the observation and the pumping well. This region then evolves into two humps: One on each side of the circular region encompassing the observation well and the pumping well. The size of the two humps expands and their values reach the maximum as flow reach steady-state. As a consequence, we hypothesize that pairs of head data at t 0 and those at either the steady-state or a late time during an HT survey could yield the best estimates of the heterogeneous T and S fields. Results from numerical experiments have verified this hypothesis and demonstrated that this sampling strategy is generally applicable even when the boundary condition is unknown. We, therefore, recommend in principle that (1) carrying out pumping tests of HT surveys for sufficiently long period of time such that drawdown reaches the entire area of interest and (2) using a constant head or zero drawdown for all boundaries during the inverse modeling analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.