A novel combination of atom transfer radical polymerization (ATRP) and redox polymerization is here used to allow instrument-free visualization of special biomolecules for which dynamic polymer growth is used in signal amplification. In this method, the convenient and mild redox polymerizationassisted amplification with cerium ammonium (IV) nitrate as oxidant at the second stage was achieved by directly using the hydroxyl groups from poly(hydroxyethyl methacrylate) (PHEMA) synthesized via ATRP at the first stage. The brushed polymers poly(hydroxylethyl methacrylate)-branched-poly (acrylamide) (PHEMA-branched-PAM) prepared by successive ATRP and redox polymerization in situ drastically grew up at the detected biomolecules spot to improve the visibility of biomolecule and simplify the detection procedure. With the proposed strategy, the signal amplification of streptavidin (SA) as model detected biomolecule was investigated on two different substrates such as silicon wafer and gold, respectively. As a result, detection limit of SA was demonstrated on the gold substrates where binding of 1.0 ng/mL SA was differentiable from the background using ellipsometry. Moreover, binding of 0.5 nmol/L DNA led to visually distinguishable spots on the gold surface under mild condition. The proposed method exhibited an efficient amplification performance for molecules detection, and paved a new way for visual diagnosis of biomolecules.
Taking advantage of the nanoparticles' large surface area and structural repeating characteristics, polymeric nanoparticles-participating polymerization-based amplification system was designed to enhance the sensitivity of detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.