As the supercritical CO2 power cycle develops and the component technologies mature, there is still a need to reduce the associated capital and operating costs to maintain a competitive levelized cost of electricity (LCOE) in order to enter the market. When considering concentrating solar power (CSP) coupled with an sCO2 power block and sensible thermal storage, the technology presents a clean source for utility-scale power generation to support baseload or peak-load electrical demand. However, the LCOE of the technology is still considered higher than the competing technologies and should be reduced to better compete in the market; 2030 targets for dispatchable solar plants are 5¢/kWh for baseload CPS and 10¢/kWh for peaker plants, as set by the United States Department of Energy. In response to this need, this study is targeting improvements in the power cycle pre-cooler to reduce power block contribution to LCOE. This study considers a dry cooler, as CSP plants are sensitive to water consumption because many installations are slated for remote or arid locations where solar irradiance is very high, but water is scarce. Furthermore, the power block footprint for an sCO2 system is quite compact, especially as compared to a steam cycle. Therefore, there is interest in installing a more compact dry cooler that is proportional to the reduced footprint sCO2 power block, while conventional dry coolers are an order of magnitude larger. The competing goals of size, performance, and cost were considered in this study to develop a compact dry cooler that can easily be packaged with the power block, significantly reducing the installation and transport cost compared to the current state of the art, while maintaining or improving upon the heat transfer performance and impact on plant LCOE. This paper details the high-level findings of a large dry cooler sensitivity study for design point selection, design of the compact dry cooler, expected year-round performance for the dry cooler and the power cycle, and the predicted LCOE for a 30-year plant life. It was found that an aluminum heat exchanger core can be suitably designed to meet the pressure and temperature requirements for a pre-cooler in an sCO2 recompression Brayton cycle. The dry cooler assembly was found to have improved heat transfer performance, allowing for increased cycle efficiencies and a reduced plant LCOE. When coupled with a centrifugal blower and compact transition duct, the dry cooler assembly was able to reduce the installation footprint by over 50%.
As the supercritical CO2 power cycle develops and the component technologies mature, there is still a need to reduce the associated costs to maintain a competitive levelized cost of electricity (LCOE) in order to enter the market. When considering concentrating solar power (CSP) coupled with an sCO2 power block and sensible thermal storage, the technology presents a clean source for utility-scale power generation to support baseload or peak-load electrical demand. However, the LCOE of the technology is still considered high and should be reduced to better compete in the market; 2030 targets are 5¢/kWh for dispatchable baseload solar plants and 10¢/kWh for peaker plants, as set by the U.S. Department of Energy. In response to this need, this study is targeting improvements in the power cycle pre-cooler to reduce power block contribution to LCOE. This paper details the high-level findings of a large sensitivity study for design point selection, compact dry cooler design, expected year-round performance for the cooler and power cycle, and the predicted LCOE for a 30-year plant life. It was found that an aluminum heat exchanger core can suitably meet the pressure and temperature requirements for an sCO2 recompression Brayton cycle. The dry cooler assembly was found to have improved heat transfer performance, allowing for increased cycle efficiencies and a reduced plant LCOE. When coupled with a centrifugal blower and compact transition duct, the dry cooler assembly was able to reduce the installation footprint by over 50%.
Uncertainty around the design and control of the supercritical CO2 power cycle must be reduced before this technology can be implemented for large-scale grid support. To better understand the day-to-day performance of an sCO2 cycle, off-design performance calculations must be included for all power block components, and performance assumptions must be removed. This study has expanded the modeled scope to include the air-side performance for the dry cooler and has incorporated discretized heat transfer calculations for both streams through the pre-cooler to better predict off-design performance. This study considered a recompression Brayton cycle in a concentrating solar power application. The cycle model utilized fixed sCO2 turbomachinery maps for the main compressor, recompressor, and expander operating to supply approximately 10 MW gross at the design point. Fixed vendor-supplied fan curves were used to calculate the air-side performance of the dry cooler. The primary heater was modeled considering both the sCO2 and heat transfer fluid streams. Off-design performance was predicted for an ambient temperature range of 0–55°C, a HTF temperature range of 705–735°C, and a HTF mass flow range of 50–105% of the design point value. To understand the importance of modeling the air-side performance, the cycle off-design performance was also calculated using a constant CO2 outlet temperature assumption and a constant approach temperature assumption for the dry cooler. Results show that using these assumptions can significantly alter the power output and cycle efficiency predictions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.