The application of additive manufacturing, well known as 3D printing, in textile industry is not more totally new. It allows is giving significant increase of the product variety, production stages reduction, widens the application areas of textiles, customization of design and properties of products according to the type of applications requirement. This paper presents a review of the current state-of-the-art, related to complete process of additive manufacturing. Beginning with the design tools, the classical machinery building computer-aided design (CAD) software, the novel non-uniform rational B-spline (NURBS) based software and parametric created models are reported. Short overview of the materials demonstrates that in this area few thermoplastic materials become standards and currently a lot of research for the application of new materials is going. Three types of 3D printing, depending on the relation to textiles, are identified and reported from the literature—3D printing on textiles, 3D printing of flexible structures and 3D printing with flexible materials. Several applications with all these methods are reported and finally the main advantages and disadvantages of the 3D printing in relation to textile industry are given.
The dimensional characteristics such as loop length (l), wales per centimeter (wpc), courses per centimeter (cpc), stitch density (s), tightness factor (K), loop shape factor (R) and take-up rate (T) of single jersey, 1x1rib, 1x1 interlock, single pique, and two-thread fleece knitted fabrics made from 100% cotton and cotton/elastane yarns (5% elastane yarn content) are investigated in this research. Dimensional properties of knitted fabrics are an important property and determine the materials consumption during production, productions parameter, and applications of different knitted structures. The sample fabrics have been conditioned for 24 hours at 20±1°C temperature and 65±2% relative humidity. The specimens used for sampling are determined as per the test standards described in the paper for each yarn type, property, and structure. As observed in the result, the properties are related to each other. It is found that the loop length, wpc, cpc, stitch density, tightness factor, loop shape factor and take-up rate of single jersey, 1x1rib, 1x1interlock, single pique, and two-thread fleece knitted fabrics made from 100% cotton and cotton/elastane yarns are significantly influenced by the presence of an elastane yarn. The loop length of single jersey, 1x1rib, and interlock knitted fabrics made from elastane yarns reduced while the single pique and fleece increased. Similarly, other dimensional properties are significantly influenced by the yarn types used during knitting.
The tensile properties such as tensile strength which is measured as breaking force in Newton (N) and elongation percent (%) at break of single jersey and 1×1 rib (knitted with full needles) knitted fabrics made from 100% cotton and cotton/Lycra yarns (5% Lycra yarn content in 95% combed cotton yarn) are investigated in this research. The sample fabrics are conditioned for 24 hours at 20 ± 1 ∘ C temperature and 65 ± 2% relative humidity before testing. Ten specimens (five for lengthwise and five for widthwise) have been taken from each of the two knitted structures, those made from 100% cotton and cotton/Lycra (at 95/5 percent ratio blend) yarns. According to the discussion and as found from the investigations, the tensile properties of single jersey and 1×1 rib knitted fabrics made from 100% cotton and cotton/Lycra yarns are significantly different from each other and both of the knitted fabrics have high elongation percent at break with cotton/Lycra blend yarns as compared to 100% cotton yarn. Knitted fabrics made from cotton/Lycra blended yarn have low breaking force and high elongation percent at break relative to knitted fabrics made from 100% cotton yarns.
Knitted fabrics bursting strength dependency was investigated. The investigation was by reviewing previously done and published research articles. In this investigation the dependency of bursting strengths on knit structures was identified and analyzed. Different findings of different scholars on bursting strengths of different knitted fabrics have been discussed in this review.
A stab resistant vest is a reinforced piece of body armour designed to resist knife or needle attacks of different energy levels specifically to the upper part of the body (chest and abdomen) to save lives. The majority of armours limit several comfort parameters, such as free locomotion, respiration, flexibility and light weight, which determine efficient use by wearers and their willingness to wear. Currently available armours are usually made of a single plate, and although often segmentation is used with just a few but still quite large pieces, the materials are compact and bulky to wear. In this study, stab protective armor elements (scale-like elements) of 3 mm thickness and 50 mm diameter were designed, produced (3D printed) and tested for performance. Aramid fibre was used for its strength, durability and process ability to develop protection elements at unidirectional and multidirectional filling angles during 3D printing. The specimens were tested according to VPAM KDIW 2004. The specimens designed and developed with multidirectional filling angles of aramid resist the puncturing energy level K1 (25 J) with a penetration depth less than the maximum allowed for the K1 energy level by VPAM. These specimens showed a high protection level of relative small thickness (3 mm) and light weight (6.57 grams for the estimated area A ≈ 1963.5 mm2) as compared to the currently certified armors for K1 (for example, the aluminum mass is 13.33 grams for 2 mm thickness and 50 mm diameter).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.