Animals and fruiting plants are involved in a complex set of interactions, with animals relying on fruiting trees as food resources, and fruiting trees relying on animals for seed dispersal. This interdependence shapes fruit signals such as colour and odour, to increase fruit detectability, and animal sensory systems, such as colour vision and olfaction to facilitate food identification and selection. Despite the ecological and evolutionary importance of plant-animal interactions for shaping animal sensory adaptations and plant characteristics, the details of the relationship are poorly understood. Here we examine the role of fruit chromaticity, luminance and odour on seed dispersal by mouse lemurs. We show that both fruit colour and odour significantly predict fruit consumption and seed dispersal by Microcebus ravelobensis and M. murinus. Our study is the first to quantify and examine the role of bimodal fruit signals on seed dispersal in light of the sensory abilities of the disperser.
Perfluorinated carboxylic acids are widely distributed in the environment, including remote regions, but their sources are not well understood. Perfluoropropionic acid (PFPrA, CF(3)CF(2)C(O)OH) has been observed in rainwater but the observed amounts can not be explained by currently known degradation pathways. Smog chamber studies were performed to assess the potential of photolysis of perfluoro-2-methyl-3-pentanone (PFMP, CF(3)CF(2)C(O)CF(CF(3))(2)), a commonly used fire-fighting fluid, to contribute to the observed PFPrA loadings. The photolysis of PFMP gives CF(3)CF(2)C·(O) and ·CF(CF(3))(2) radicals. A small (0.6%) but discernible yield of PFPrA was observed in smog chamber experiments by liquid chromatography-mass spectrometry offline chamber samples. The Tropospheric Ultraviolet-Visible (TUV) model was used to estimate an atmospheric lifetime of PFMP with respect to photolysis of 4-14 days depending on latitude and time of year. PFMP can undergo hydrolysis to produce PFPrA and CF(3)CFHCF(3) (HFC-227ea) in a manner analogous to the Haloform reaction. The rate of hydrolysis was measured using (19)F NMR at two different pHs and was too slow to be of importance in the atmosphere. Hydration of PFMP to give a geminal diol was investigated computationally using density functional theory. It was determined that hydration is not an important environmental fate of PFMP. The atmospheric fate of PFMP seems to be direct photolysis which, under low NO(x) conditions, gives PFPrA in a small yield. PFMP degradation contributes to, but does not appear to be the major source of, PFPrA observed in rainwater.
The pentafluorosulfanyl (SF5) functional group was investigated from an environmental perspective to ascertain its physical properties and photolytic fate. Five aromatic probe compounds were compared with their trifluoromethyl analogs. Water solubilities for SF5 compounds ranged from 78 mg/L to 2.4 g/L. Octanol-water partitioning coefficients ranged from log K(OW) = 2.9 to 3.6, all of which were approximately 0.5 to 0.6 log units more hydrophobic than their trifluoromethyl analogs. The direct photolytic fate of SF5 compounds was studied, and the SF5 group was found to completely degrade using actinic radiation with hourly half-lives. The reaction was followed by high-performance liquid chromatography with a UV-visible detector, 19F nuclear magnetic resonance spectroscopy, and high-resolution mass spectrometry. It was found that five equivalents of fluoride were released to form a benzenesulfonate as a final product of photodegradation. Finally, an SF5 analog of fluometuron, a potentially new herbicide, was synthesized and likewise photolyzed. The present study provides the first evidence that pentafluorosulfanyl can degrade under mild, environmentally relevant conditions.
Polyfluorinated amides (PFAMs) are a class of compounds produced as byproducts of polyfluorinated sulfonamide synthesis by electrochemical fluorination (ECF). We measured four PFAM derivatives of perfluorooctanoic acid (PFOA) in a wide range of compounds, experimental materials, and commercial products synthesized by ECF. Initial screening was performed using headspace solid phase microextraction gas chromatography mass spectrometry (SPME-GC-MS), and quantification using in-house synthesized standards was accomplished with GC-MS using positive chemical ionization. Two monosubstituted PFAMs, N-methylperfluorooctanamide (MeFOA) and N-ethylperfluorooctanamide (EtFOA), were detected in the majority of materials that were analyzed. Two disubstituted PFAMs, N-methyl-N-(2-hydroxyethyl)perfluorooctanamide (MeFOAE) and N-ethyl-N-(2-hydroxyethyl)perfluorooctanamide (EtFOAE), were not detected in any sample, likely because they were never synthesized. The concentrations of PFAMs in the sulfonamide compounds under study ranged from 12 to 6736 μg/g, suggesting their historical importance as PFCA precursors. In each case, branched isomers for PFAMs were detected, providing further support for their link to an ECF source. A hydrolysis study performed at pH 8.5 showed no degradation of EtFOA to PFOA after 8 days due to the stability of the amide bond. The environmental fate of PFAMs is suggested to be volatilization to the atmosphere followed by oxidation by hydroxyl radical with a predicted lifetime of 3-20 days. Subsequent PFAM exposure to biota will likely lead to enzymatic hydrolysis of the amide linkage to give a PFCA. Human exposure to PFAMs may have contributed to the presence of branched PFOA isomers in blood by serving as an indirect source. The decline in PFOA concentrations in human blood is consistent with a significant drop in PFAM production concurrent with the POSF phase-out in 2000-2001.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.