Low
permeability across the outer membrane is a major reason why
most antibiotics are ineffective against Gram-negative bacteria. Agents
that permeabilize the outer membrane are typically toxic at their
effective concentrations. Here, we report the development of a broad-spectrum
homodimeric tobramycin adjuvant that is nontoxic and more potent than
the gold standard permeabilizing agent, polymyxin B nonapeptide. In
pilot studies, the adjuvant confers potent bactericidal activity on
novobiocin against Gram-negative bacteria, including carbapenem-resistant
and colistin-resistant strains bearing plasmid-borne mcr-1 genes. Resistance development to the combination was significantly
reduced, relative to novobiocin alone, and there was no induction
of cross-resistance to other antibiotics, including the gyrase-acting
fluoroquinolones. Tobramycin homodimer may allow the use of lower
doses of novobiocin, overcoming its twin problem of efficacy and toxicity.
Objectives
To develop a multifunctional adjuvant molecule that can rescue β-lactam antibiotics and β-lactam/β-lactamase inhibitor combinations from resistance in carbapenem-resistant Pseudomonas aeruginosa clinical isolates.
Methods
Preparation of adjuvant was guided by structure–activity relationships, following standard protocols. Susceptibility and chequerboard studies were assessed using serial 2-fold dilution assays. Toxicity was evaluated against porcine erythrocytes, human embryonic kidney (HEK293) cells and liver carcinoma (HepG2) cells via MTS assay. Preliminary in vivo efficacy was evaluated using a Galleria mellonella infection model.
Results
Conjugation of tobramycin and cyclam abrogates the ribosomal effects of tobramycin but confers a potent adjuvant property that restores full antibiotic activity of meropenem and aztreonam against carbapenem-resistant P. aeruginosa. Therapeutic levels of susceptibility, as determined by CLSI susceptibility breakpoints, were attained in several MDR clinical isolates, and time–kill assays revealed a synergistic dose-dependent pharmacodynamic relationship. A triple combination of the adjuvant with ceftazidime/avibactam (approved), aztreonam/avibactam (Phase III) and meropenem/avibactam enhances the efficacies of β-lactam/β-lactamase inhibitors against recalcitrant strains, suggesting rapid access of the combination to their periplasmic targets. The newly developed adjuvants, and their combinations, were non-haemolytic and non-cytotoxic, and preliminary in vivo evaluation in G. mellonella suggests therapeutic potential for the double and triple combinations.
Conclusions
Non-ribosomal tobramycin–cyclam conjugate mitigates the effect of OprD/OprF porin loss in P. aeruginosa and potentiates β-lactam/β-lactamase inhibitors against carbapenem-resistant clinical isolates, highlighting the complexity of resistance to β-lactam antibiotics. Our strategy presents an avenue to further preserve the therapeutic utility of β-lactam antibiotics.
The lack of therapeutic options to treat infections caused by multidrug-resistant (MDR) pathogens, especially Gram-negative bacteria, is apparent. Therefore, it is imperative to develop new strategies to address the problem of antimicrobial resistance. Repurposing non-antibiotic commercial drugs for antimicrobial therapy presents a viable option. We screened six anticancer drugs for their potential use in antimicrobial therapy. Here, we provide in vitro evidence that suggests feasibility to repurpose the anticancer drug mitomycin C against MDR Gram-negative bacteria. We also demonstrated that mitomycin C, etoposide and doxorubicin were affected by drug efflux in Pseudomonas aeruginosa. In combination with a tobramycin-ciprofloxacin antibiotic hybrid (TOB-CIP), the antibacterial activity of mitomycin C was enhanced against MDR clinical isolates of P. aeruginosa, Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, and Enterobacter cloacae. In fact, 4 µg/mL (3 µM) TOB-CIP reduced the minimum inhibitory concentration of mitomycin C to ≤1 µg/mL against MDR Gram-negative bacteria, except A. baumannii. We showed that synergy was inherent to TOB-CIP and that neither tobramycin nor ciprofloxacin individually synergized with mitomycin C. Our finding supports identifying adjuvant partners for mitomycin C, such as TOB-CIP, to enhance suitability for antimicrobial therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.