This two-part paper demonstrates the use of wave-optics simulations to model the effects of dynamic speckle. In Part II, we formulate closed-form expressions for the analytical irradiance correlation coefficient, specifically in the image plane of an optical system. These expressions are for square, circular, and Gaussian limiting apertures and four different modes of extended-object motion, including in-plane and out-of-plane translation and rotation. Using a phase-screen approach, we then simulate the equivalent scattering from an optically rough extended object, where we assume that the surface heights are uniformly distributed and delta correlated from grid point to grid point. For comparison to the analytical irradiance correlation coefficient, we also calculate the numerical irradiance correlation coefficient from the dynamic speckle after propagation from the simulated object plane to the simulated image plane. Overall, the analytical and numerical results definitely demonstrate that, relative to theory, the dynamic speckle in the simulated image plane is properly correlated from one frame to the next. Such validated wave-optics simulations provide the framework needed to model more sophisticated setups and obtain accurate results for system-level studies.
This two-part paper demonstrates the use of wave-optics simulations to model the effects of dynamic speckle. In Part I, we formulate closed-form expressions for the analytical irradiance correlation coefficient, specifically in the pupil plane of an optical system. These expressions are for square, circular, and Gaussian scattering spots and four different modes of extended-object motion, including in-plane and out-of-plane translation and rotation. Using a phase-screen approach, we then simulate the equivalent scattering from an optically rough extended object, where we assume that the surface heights are uniformly distributed and delta correlated from grid point to grid point. For comparison to the analytical irradiance correlation coefficient, we also calculate the numerical irradiance correlation coefficient from the dynamic speckle after propagation from the simulated object plane to the simulated pupil plane. Overall, the analytical and numerical results definitely demonstrate that, relative to theory, the dynamic speckle in the simulated pupil plane is properly correlated from one frame to the next. Such validated wave-optics simulations provide the framework needed to model more sophisticated setups and obtain accurate results for system-level studies.
Atmospheric path radiance in the infrared is an extremely important quantity in calculating system performance in certain infrared detection systems. For infrared search and track (IRST) system performance calculations, the path radiance competes with the target for precious detector well electrons. In addition, the radiance differential between the target and the path radiance defines the signal level that must be detected. Long-range, high-performance, offensive IRST system design depends on accurate path radiance predictions. In addition, in new applications such as drone detection where a dim unresolved target is embedded into a path radiance background, sensor design and performance are highly dependent on atmospheric path radiance. Being able to predict the performance of these systems under particular weather conditions and locations has long been an important topic. MODTRAN has been a critical tool in the analysis of systems and prediction of electro-optical system performance. The authors have used MODTRAN over many years for an average system performance using the typical “pull-down” conditions in the software. This article considers the level of refinement required for a custom MODTRAN atmosphere profile to satisfactorily model an infrared camera’s performance for a specific geographic location, date, and time. The average difference between a measured sky brightness temperature and a MODTRAN predicted value is less than 0.5 °C with sufficient atmosphere profile updates. The agreement between experimental results and MODTRAN predictions indicates the effectiveness of including updated atmospheric composition, radiosonde, and air quality data from readily available Internet sources to generate custom atmosphere profiles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.