Myelin-specific induction of tolerance represents a promising means to modify the course of autoimmune inflammatory demyelinating diseases such as multiple sclerosis (MS). Our laboratory has focused on a novel preclinical strategy for the induction of tolerance to the major encephalitogenic epitopes of myelin that cause experimental autoimmune encephalomyelitis (EAE) in rats and mice. This novel approach is based on the use of cytokine-NAg (neuroantigen) fusion proteins comprised of the native cytokine fused either with or without a linker to a NAg domain. Several single-chain cytokine-NAg fusion proteins were tested including GMCSF-NAg, IFNbeta-NAg, NAgIL16, and IL2-NAg. These cytokine-NAg vaccines were tolerogenic, therapeutic vaccines that had tolerogenic activity when given as pre-treatments before encephalitogenic immunization and also were effective as therapeutic interventions during the effector phase of EAE. The rank order of inhibitory activity was as follows: GMCSF-NAg, IFNbeta-NAg > NAgIL16 > IL2-NAg > MCSF-NAg, IL4-NAg, IL-13-NAg, IL1RA-NAg, and NAg. Several cytokine-NAg fusion proteins exhibited antigen-targeting activity. High affinity binding of the cytokine domain to specific cytokine receptors on particular subsets of APC resulted in the concentrated uptake of the NAg domain by those APC which in turn facilitated the enhanced processing and presentation of the NAg domain on cell surface MHC class II glycoproteins. For most cytokine-NAg vaccines, the covalent linkage of the cytokine domain and NAg domain was required for inhibition of EAE, thereby indicating that antigenic targeting of the NAg domain to APC was also required in vivo for tolerogenic activity. Overall, these studies introduced a new concept of cytokine-NAg fusion proteins as a means to induce tolerance and to inhibit the effector phase of autoimmune disease. The approach has broad application for suppressive vaccination as a therapy for autoimmune diseases such as MS.
To test a novel concept for the generation of tolerogenic vaccines, fusion proteins were constructed encompassing a tolerogenic or biasing cytokine and the major encephalitogenic peptide of guinea pig myelin basic protein (GPMBP; i.e., neuroantigen or NAg). The cytokine domain was predicted to condition APC while simultaneously targeting the covalently linked encephalitogenic peptide to the MHC class II Ag processing pathway of those conditioned APC. Rats were given three s.c. injections of cytokine-NAg in saline 1–2 wk apart and then at least 1 wk later were challenged with NAg in CFA. The rank order of tolerogenic activity in the Lewis rat model of EAE was NAgIL16 > IL2NAg > IL1RA-NAg, IL13NAg ≥ IL10NAg, GPMBP, GP69–88, and saline. NAgIL16 was also an effective inhibitor of experimental autoimmune encephalomyelitis when administered after an encephalitogenic challenge during the onset of clinical signs. Covalent linkage of the NAg and IL-16 was required for inhibition of experimental autoimmune encephalomyelitis. These data identify IL-16 as an optimal cytokine partner for the generation of tolerogenic vaccines and indicate that such vaccines may serve as Ag-specific tolerogens for the treatment of autoimmune disease.
The purpose of this study was to assess whether the Ag-targeting activity of cytokine/neuroantigen (NAg) fusion proteins may be associated with mechanisms of tolerance induction. To assess this question, we expressed fusion proteins comprised of a N-terminal cytokine domain and a C-terminal NAg domain. The cytokine domain comprised either rat IL-2 or IL-4, and the NAg domain comprised the dominant encephalitogenic determinant of the guinea pig myelin basic protein. Subcutaneous administration of IL2NAg (IL-2/NAg fusion protein) into Lewis rats either before or after an encephalitogenic challenge resulted in an attenuated course of experimental autoimmune encephalomyelitis. In contrast, parallel treatment of rats with IL4NAg (IL-4/NAg fusion protein) or NAg lacked tolerogenic activity. In the presence of IL-2R+ MHC class II+ T cells, IL2NAg fusion proteins were at least 1,000 times more potent as an Ag than NAg alone. The tolerogenic activity of IL2NAg in vivo and the enhanced potency in vitro were both dependent upon covalent linkage of IL-2 and NAg. IL4NAg also exhibited enhanced antigenic potency. IL4NAg was ∼100-fold more active than NAg alone in the presence of splenic APC. The enhanced potency of IL4NAg also required covalent linkage of cytokine and NAg and was blocked by soluble IL-4 or by a mAb specific for IL-4. Other control cytokine/NAg fusion proteins did not exhibit a similar enhancement of Ag potency compared with NAg alone. Thus, the IL2NAg and IL4NAg fusion proteins targeted NAg for enhanced presentation by particular subsets of APC. The activities of IL2NAg revealed a potential relationship between NAg targeting to activated T cells, T cell-mediated Ag presentation, and tolerance induction.
BackgroundVaccination strategies that elicit antigen-specific tolerance are needed as therapies for autoimmune disease. This study focused on whether cytokine-neuroantigen (NAg) fusion proteins could inhibit disease in chronic murine models of experimental autoimmune encephalomyelitis (EAE) and thus serve as potential therapeutic modalities for multiple sclerosis.ResultsA fusion protein comprised of murine GM-CSF as the N-terminal domain and the encephalitogenic MOG35-55 peptide as the C-terminal domain was tested as a tolerogenic, therapeutic vaccine (TTV) in the C57BL/6 model of EAE. Administration of GMCSF-MOG before active induction of EAE, or alternatively, at the onset of EAE blocked the development and progression of EAE. Covalent linkage of the GM-CSF and MOG35-55 domains was required for tolerogenic activity. Likewise, a TTV comprised of GM-CSF and PLP139-151 was a tolerogen in the SJL model of EAE.ConclusionThese data indicated that fusion proteins containing GM-CSF coupled to myelin auto-antigens elicit tolerance rather than immunity.
Cytokine-Ag fusion proteins represent a novel approach for induction of Ag-specific tolerance and may constitute an efficient therapy for autoimmune disease. This study addressed whether a fusion protein containing rat IFN-β and the encephalitogenic 73–87 determinant of myelin basic protein (i.e., the neuroantigen, or NAg) could prevent or treat experimental autoimmune encephalomyelitis (EAE) in Lewis rats. The optimal structure of the fusion protein was comprised of the rat IFN-β cytokine as the N-terminal domain with an enterokinase (EK) linker to the NAg domain. Both cytokine and NAg domains had full biological activity. Subcutaneous administration of 1 nmol of IFNβ-NAg fusion protein in saline on days −21, −14, and −7 before encephalitogenic challenge on day 0 resulted in a substantial attenuation of EAE. In contrast, administration of IFN-β or NAg alone did not affect susceptibility to EAE. The covalent attachment of IFN-β and NAg was not necessary, because separate injections of IFN-β and NAg at adjacent sites were as effective as injection of IFNβ-NAg for prevention of disease. When treatment was initiated after disease onset, the rank order of inhibitory activity was as follows: the IFNβ-NAg fusion protein ≥ a mixture of IFN-β plus NAg > IFN-β > NAg. The novel finding that IFN-β acts as a tolerogenic adjuvant as well as a tolerogenic fusion partner may have significance for development of tolerogenic vaccines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.