We examine the problem of allocating a given total storage budget in a distributed storage system for maximum reliability. A source has a single data object that is to be coded and stored over a set of storage nodes; it is allowed to store any amount of coded data in each node, as long as the total amount of storage used does not exceed the given budget. A data collector subsequently attempts to recover the original data object by accessing only the data stored in a random subset of the nodes. By using an appropriate code, successful recovery can be achieved whenever the total amount of data accessed is at least the size of the original data object. The goal is to find an optimal storage allocation that maximizes the probability of successful recovery. This optimization problem is challenging in general because of its combinatorial nature, despite its simple formulation. We study several variations of the problem, assuming different allocation models and access models. The optimal allocation and the optimal symmetric allocation (in which all nonempty nodes store the same amount of data) are determined for a variety of cases. Our results indicate that the optimal allocations often have nonintuitive structure and are difficult to specify. We also show that depending on the circumstances, coding may or may not be beneficial for reliable storage.Comment: Extended version of a journal paper in the IEEE Transactions on Information Theory. 21 pages, 10 figures, 3 table
Mobile crowdsensing has emerged as an efficient sensing paradigm which combines the crowd intelligence and the sensing power of mobile devices, e.g., mobile phones and Internet of Things (IoT) gadgets. This article addresses the contradicting incentives of privacy preservation by crowdsensing users and accuracy maximization and collection of true data by service providers. We firstly define the individual contributions of crowdsensing users based on the accuracy in data analytics achieved by the service provider from buying their data. We then propose a truthful mechanism for achieving high service accuracy while protecting the privacy based on the user preferences. The users are incentivized to provide true data by being paid based on their individual contribution to the overall service accuracy. Moreover, we propose a coalition strategy which allows users to cooperate in providing their data under one identity, increasing their anonymity privacy protection, and sharing the resulting payoff. Finally, we outline important open research directions in mobile and people-centric crowdsensing.
Emerging information-centric networking architectures seek to optimally utilize both bandwidth and storage for efficient content distribution. This highlights the need for joint design of traffic engineering and caching strategies. We present a systematic framework for joint dynamic interest request forwarding and dynamic cache placement and eviction, within the context of the Named Data Networking (NDN) architecture. The framework employs a virtual control plane which operates on the user demand rate for data objects in the network, and an actual plane which handles Interest Packets and Data Packets. We develop distributed algorithms within the virtual plane to achieve network load balancing through dynamic forwarding and caching, thereby maximizing the user demand rate that the NDN network can satisfy. Numerical experiments demonstrate the superior performance of the resulting algorithms for the actual plane in terms of low user delay.
86Abstract -We investigate the problem of using several storage nodes to store a data object, subject to an aggregate storage budget or redundancy constraint. It is challenging to find the optimal allocation that maximizes the probability of successful recovery by the data collector because of the large space of possible symmetric and nonsymmetric allocations, and the nonconvexity of the problem. For the special case of probability-l recovery, we show that the optimal allocation that minimizes the required budget is symmetric. We further explore several storage allocation and access models, and determine the optimal symmetric allocation in the high-probability regime for a case of interest. Based on our experimental investigation, we make a general conjecture about a phase transition on the optimal allocation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.