De novo mutations (DNMs) in protein-coding genes are a well-established cause of developmental disorders (DD). However, known DD-associated genes only account for a minority of the observed excess of such DNMs. To identify novel DD-associated genes, we integrated healthcare and research exome sequences on 31,058 DD parent-offspring trios, and developed a simulation-based statistical test to identify gene-specific enrichments of DNMs. We identified 285 significantly DD-associated genes, including 28 not previously robustly associated with DDs. Despite detecting more DD-associated genes than in any previous study, much of the excess of DNMs of protein-coding genes remains unaccounted for. Modelling suggests that over 1,000 novel DD-associated genes await discovery, many of which are likely to be less penetrant than the currently known genes. Research access to clinical diagnostic datasets will be critical for completing the map of dominant DDs.
BackgroundSilver–Russell syndrome (SRS) is characterised by intrauterine growth restriction, poor postnatal growth, relative macrocephaly, triangular face and asymmetry. Maternal uniparental disomy (mUPD) of chromosome 7 and hypomethylation of the imprinting control region (ICR) 1 on chromosome 11p15 are found in 5–10% and up to 60% of patients with SRS, respectively. As many features are non-specific, diagnosis of SRS remains difficult. Studies of patients in whom the molecular diagnosis is confirmed therefore provide valuable clinical information on the condition.MethodsA detailed, prospective study of 64 patients with mUPD7 (n=20) or ICR1 hypomethylation (n=44) was undertaken.Results and conclusionsThe considerable overlap in clinical phenotype makes it difficult to distinguish these two molecular subgroups reliably. ICR1 hypomethylation was more likely to be scored as ‘classical’ SRS. Asymmetry, fifth finger clinodactyly and congenital anomalies were more commonly seen with ICR1 hypomethylation, whereas learning difficulties and referral for speech therapy were more likely with mUPD7. Myoclonus-dystonia has been reported previously in one mUPD7 patient. The authors report mild movement disorders in three further cases. No correlation was found between clinical severity and level of ICR1 hypomethylation. Use of assisted reproductive technology in association with ICR1 hypomethylation seems increased compared with the general population. ICR1 hypomethylation was also observed in affected siblings, although recurrence risk remains low in the majority of cases. Overall, a wide range of severity was observed, particularly with ICR1 hypomethylation. A low threshold for investigation of patients with features suggestive, but not typical, of SRS is therefore recommended.
Beckwith-Wiedemann syndrome (BWS) is a fetal overgrowth and human imprinting disorder resulting from the deregulation of a number of genes, including IGF2 and CDKN1C, in the imprinted gene cluster on chromosome 11p15.5. Most cases are sporadic and result from epimutations at either of the two 11p15.5 imprinting centres (IC1 and IC2). However, rare familial cases may be associated with germline 11p15.5 deletions causing abnormal imprinting in cis. We report a family with BWS and an IC2 epimutation in which affected siblings had inherited different parental 11p15.5 alleles excluding an in cis mechanism. Using a positional-candidate gene approach, we found that the mother was homozygous for a frameshift mutation in exon 6 of NLRP2. While germline mutations in NLRP7 have previously been associated with familial hydatidiform mole, this is the first description of NLRP2 mutation in human disease and the first report of a trans mechanism for disordered imprinting in BWS. These observations are consistent with the hypothesis that NLRP2 has a previously unrecognised role in establishing or maintaining genomic imprinting in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.