Intermolecular interactions are critical to many chemical phenomena, but their accurate computation using ab initio methods is often limited by computational cost. The recent emergence of machine learning (ML) potentials may be a promising alternative. Useful ML models should not only estimate accurate interaction energies, but also predict smooth and asymptotically correct potential energy surfaces. However, existing ML models are not guaranteed to obey these constraints. Indeed, systemic deficiencies are apparent in the predictions of our previous hydrogen-bond model as well as the popular ANI-1X model, which we attribute to the use of an atomic energy partition. As a solution, we propose an alternative atomic-pairwise framework specifically for intermolecular ML potentials, and we introduce AP-Net-a neural network model for interaction energies. The AP-Net model is developed using this physically motivated atomic-pairwise paradigm and also exploits the interpretability of symmetry adapted perturbation theory (SAPT). We show that in contrast to other models, AP-Net produces smooth, physically meaningful intermolecular potentials exhibiting correct asymptotic behavior. Initially trained on only a limited number of mostly hydrogen-bonded dimers, AP-Net makes accurate predictions across the chemically diverse S66x8 dataset, demonstrating significant transferability. On a test set including experimental hydrogen-bonded dimers, AP-Net predicts total interaction energies with a mean absolute error of 0.37 kcal mol−1, reducing errors by a factor of 2-5 across SAPT components from previous neural network potentials. The pairwise interaction energies of the model are physically interpretable, and an investigation of predicted electrostatic energies suggests that the model 'learns' the physics of hydrogen-bonded interactions. File list (2) download file view on ChemRxiv paper.pdf (3.50 MiB) download file view on ChemRxiv suppmat.pdf (9.21 MiB)
Atomic charges are critical quantities in molecular mechanics and molecular dynamics, but obtaining these quantities requires heuristic choices based on atom-typing or relatively expensive quantum mechanical methods to generate a density to be partitioned. Most machine learning efforts in this domain ignore total molecular charges, relying on overfitting and arbitrary rescaling in order to match the total system charge.Here we introduce the electron-passing neural network (EPNN), a fast, accurate neural network atomic charge partitioning model that conserves total molecular charge by construction. EPNNs predict atomic charges very similar to those obtained by partitioning quantum mechanical densities, but at such a small fraction of the cost that they 1 can be easily computed for large biomolecules. Charges from this method may be used directly for molecular mechanics, as features for cheminformatics, or as input to any neural network potential.
Accurate prediction of intermolecular interaction energies is a fundamental challenge in electronic structure theory due to their subtle character and small magnitudes relative to total molecular energies. Symmetry adapted perturbation theory (SAPT) provides rigorous quantum mechanical means for computing such quantities directly and accurately, but for a computational cost of at least O(N5), where N is the number of atoms. Here, we report machine learned models of SAPT components with a computational cost that scales asymptotically linearly, O(N). We use modified multi-target Behler–Parrinello neural networks and specialized intermolecular symmetry functions to address the idiosyncrasies of the intermolecular problem, achieving 1.2 kcal mol−1 mean absolute errors on a test set of hydrogen bound complexes including structural data extracted from the Cambridge Structural Database and Protein Data Bank, spanning an interaction energy range of 20 kcal mol−1. Additionally, we recover accurate predictions of the physically meaningful SAPT component energies, of which dispersion and induction/polarization were the easiest to predict and electrostatics and exchange–repulsion are the most difficult.
<div> <div> <div> <p>Intermolecular interactions are critical to many chemical phenomena, but their accurate computation using <i>ab initio</i> methods is often limited by computational cost. The recent emergence of machine learning (ML) potentials may be a promising alternative. Useful ML models should not only estimate accurate interaction energies, but also predict smooth and asymptotically correct potential energy surfaces. However, existing ML models are not guaranteed to obey these constraints. Indeed, systemic deficiencies are apparent in the predictions of our previous hydrogen-bond model as well as the popular ANI-1X model, which we attribute to the use of an atomic energy partition. As a solution, we propose an alternative atomic-pairwise framework specifically for intermolecular ML potentials, and we introduce AP-Net—a neural network model for interaction energies. The AP-Net model is developed using this physically motivated atomic-pairwise paradigm and also exploits the interpretability of symmetry adapted perturbation theory (SAPT). We show that in contrast to other models, AP-Net produces smooth, physically meaningful intermolecular potentials exhibiting correct asymptotic behavior. Initially trained on only a limited number of mostly hydrogen-bonded dimers, AP-Net makes accurate predictions across the chemically diverse S66x8 dataset, demonstrating significant transferability. On a test set including experimental hydrogen-bonded dimers, AP-Net predicts total interaction energies with a mean absolute error of 0.37 kcal mol−1, reducing errors by a factor of 2-5 across SAPT components from previous neural network potentials. The pairwise interaction energies of the model are physically interpretable, and an investigation of predicted electrostatic energies suggests that the model ‘learns’ the physics of hydrogen-bonded interactions. </p> </div> </div> </div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.