No abstract
DNA has been described as a structural component of the extracellular matrix (ECM) in bacterial biofilms. In Candida albicans there is a scarce knowledge concerning the contribution of extracellular DNA (eDNA) to biofilm matrix and overall structure. This work examined the presence and quantified the amount of eDNA in C.albicans biofilm ECM and the effect of DNase treatment and the addition of exogenous DNA on C. albicans biofilm development as indicators of a role for eDNA in biofilm development. We were able to detect the accumulation of eDNA in biofilm ECM extracted from C. albicans biofilms formed under conditions of flow, although the quantity of eDNA detected differed according to growth conditions, in particular with regards to the medium used to grow the biofilms. Experiments with C. albicans biofilms formed statically using a microtiter plate model indicated that the addition of exogenous DNA (>160 ng/ml) increases biofilm biomass and, conversely, DNase treatment (>0.03 mg/ml) decreases biofilm biomass at later time points of biofilm development. We present evidence for the role of eDNA in C. albicans biofilm structure and formation, consistent with eDNA being a key element of the ECM in mature C. albicans biofilms and playing a predominant role in biofilm structural integrity and maintenance.
Candida albicans is an opportunistic pathogenic fungus capable of causing infections in immunocompromised patients. Candidiasis is often associated with the formation of biofilms on the surface of inert or biological materials. Biofilms are structured microbial communities attached to a surface and encased within a matrix of exopolymeric substance (EPS). At present, very little is known about the changes in protein profiles that occur during the transition from the planktonic to the biofilm mode of growth. Here, we report the use of proteomics for the comparative analysis of subcellular fractions obtained from C. albicans biofilm and planktonic cultures, including cell surface-associated proteins and secreted components present in liquid culture supernatants (for planktonic cultures) and EPS (for biofilms). The analysis revealed a high degree of similarity between the protein profiles associated with the planktonic and biofilm extracts, and led to the identification of several differentially expressed protein spots. Among the differentially expressed proteins, there was a preponderance of metabolic enzymes that have been described as cell surface proteins and immunodominant antigens. Proteins found in the biofilm matrix included a few predicted to form part of the secretome, and also many secretion-signal-less proteins. These observations contribute to our understanding of the C. albicans biofilm lifestyle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.