This translational application of proteomics technology identifies pretreatment serum levels of C4a and C3a as predictive biomarkers of response. Large validation studies in an independent cohort are merited.
Considerable interest, speculation and controversy have been generated utilising surface-enhanced laser desorption/ionization in conjunction with mass spectrometry (SELDI-MS) for the diagnosis, prognosis and therapeutic monitoring of cancer and offers an attractive approach to cancer biomarker discovery from tissues and biological fluids. This technology utilises a combination of mass spectrometry and chromatography to facilitate protein profiling of complex biological mixtures. Compared to some other more traditional proteomic platforms, such as 2D polyacrylamide gel electrophoresis, it has a high-throughput capability and can resolve low-mass proteins. However, a considerable number of challenging issues related to the design of studies, including reproducibility, sensitivity, specificity, variation in sample collection, processing and storage, have been reported as problematic with this technology; albeit some of these concerns could perhaps also be lauded against other proteomic approaches that have attempted to address complex protein mixtures, such as plasma. Applications, successes and limitations of SELDI-MS in both clinical and basic science arenas will be reviewed in this article.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.