Additional index words. Cannabis sativa, marijuana, deficit irrigation, plant water potential, medicinal crops, volumetric soil moisture content Abstract. Controlled application of drought can increase secondary metabolite concentrations in some essential oil-producing crops. To evaluate the effects of drought on cannabis (Cannabis sativa L.) inflorescence dry weight and cannabinoid content, drought stress was applied to container-grown cannabis plants through gradual growing substrate drying under controlled environment. Fertigation was withheld during week 7 in the flowering stage until midday plant water potential (WP) was approximately L1.5 MPa (drought stress threshold). This occurred after 11 days without fertigation. A well-irrigated control was used for comparison. Leaf net photosynthetic rate (P n ), plant WP, wilting (leaf angle), and volumetric moisture content (VMC) were monitored throughout the drying period until the day after the drought group was fertigated. At the drought stress threshold, P n was 42% lower and plant WP was 50% lower in the drought group than the control. Upon harvest, drought-stressed plants had increased concentrations of major cannabinoids tetrahydrocannabinol acid (THCA) and cannabidiolic acid (CBDA) by 12% and 13%, respectively, compared with the control. Further, yield per unit growing area of THCA was 43% higher than the control, CBDA yield was 47% higher, Δ 9 -tetrahydrocannabinol (THC) yield was 50% higher, and cannabidiol (CBD) yield was 67% higher. Controlled drought stress may therefore be an effective horticultural management technique to maximize both inflorescence dry weight and cannabinoid yield in cannabis, although results may differ by cannabis cultivar or chemotype.
This study evaluated the influence of several factors and their interactive effects on the propagation success of stem cuttings of cannabis (Cannabis sativa L.). Factors included (i) leaf number (two or three), (ii) leaf tip removal (one-third of leaf tips removed), (iii) basal/apical position of stem cutting on the stock plant, and (iv) rooting hormone [0.2% indole-3-butyric (IBA) acid gel or 0.2% willow (Salix alba L.) extract gel]. Cuttings were placed in a growth chamber for twelve days and then assessed on their rooting success rate and root quality using a relative root quality scale. The IBA gel delivered a 2.1× higher rooting success rate and 1.6× higher root quality than the willow extract. Removing leaf tips reduced rooting success rate from 71% to 53% without influencing root quality. Cuttings with three leaves had 15% higher root quality compared with those with two, but leaf number did not influence rooting success rate. Position of cutting had little effect on rooting success or quality. To achieve maximum rooting success and root quality, cuttings from either apical or basal positions should have at least three fully expanded uncut leaves and the tested IBA rooting hormone is preferred to the willow-based product.
Background The taxonomic classification of Cannabis genus has been delineated through three main types: sativa (tall and less branched plant with long and narrow leaves), indica (short and highly branched plant with broader leaves) and ruderalis (heirloom type with short stature, less branching and small thick leaves). While still under discussion, particularly whether the genus is polytypic or monotypic, this broad classification reflects putative geographical origins of each group and putative chemotype and pharmacologic effect. Methods Here we describe a thorough investigation of cannabis accessions using a set of 23 highly informative and polymorphic SNP (Single Nucleotide Polymorphism) markers associated with important traits such as cannabinoid and terpenoid expression as well as fibre and resin production. The assay offers insight into cannabis population structure, phylogenetic relationship, population genetics and correlation to secondary metabolite concentrations. We demonstrate the utility of the assay for rapid, repeatable and cost-efficient genotyping of commercial and industrial cannabis accessions for use in product traceability, breeding programs, regulatory compliance and consumer education. Results We identified 5 clusters in the sample set, including industrial hemp (K5) and resin hemp, which likely underwent a bottleneck to stabilize cannabidiolic acid (CBDA) accumulation (K2, Type II & III). Tetrahydrocannabinolic acid (THCA) resin (Type I) makes up the other three clusters with terpinolene (K4 - colloquial “sativa” or “Narrow Leaflet Drug” (NLD), myrcene/pinene (K1) and myrcene/limonene/linalool (K3 - colloquial “indica”, “Broad Leaflet Drug” (BLD), which also putatively harbour an active version of the cannabichrometic acid Synthase gene (CBCAS). Conclusion The final chemical compositions of cannabis products have key traits related to their genetic identities. Our analyses in the context of the NCBI Cannabis sativa Annotation Release 100 allows for hypothesis testing with regards to secondary metabolite production. Genetic markers related to secondary metabolite production will be important in many sectors of the cannabis marketplace. For example, markers related to THC production will be important for adaptable and compliant large-scale seed production under the new US Domestic Hemp Production Program.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.