The cut quality is of great importance during the laser cutting process. The quality of laser cut mainly depends on an appropriate selection of process parameters. In this paper, the effect of process parameters was analysed on the laser cut quality of an uncommon alloy, the tungsten alloy (W ≈ 92.5 % and the remainder Fe and Ni) sheet with thickness of 1 mm. This alloy has a wide application in different industrial areas, e.g. in medical applications, the automobile sectors, and the aircraft industry. This paper introduces a developed back-propagation artificial neural network (BP-ANN) model for the analysis and prediction of cut quality during the CO 2 laser cutting process. In the presented study, three input process parameters were considered such as laser power, cutting speed and assist gas type, and two output parameters such as kerf width and average surface roughness. Amongst the 42 experimental results, 34 data sets were chosen for training the network, whilst the remaining 8 results were used as test data. The average prediction error was found to be 5.5 % for kerf width and 9.5 % for surface roughness. The results of the predicted kerf width and surface roughness by the BP-ANN model were compared with experimental data. Based on the results of the study, it was shown that the proposed artificial neural network model could be a useful tool for analysing and predicting surface roughness and kerf width during CO 2 laser cutting processes.
Reinforcing the polymer with nanoparticles and fibers improves the mechanical, thermal and electrical properties. Owing to this, the functional parts produced by the FDM process of such materials can be used in industrial applications. However, optimal parameters’ selection is crucial to produce parts with optimal properties, such as mechanical strength. This paper focuses on the analysis of influential process parameters on the tensile strength of FDM printed parts. Two statistical methods, RSM and ANN, were applied to investigate the effect the layer thickness, printing speed, raster angle and wall thickness on the tensile strength of test specimens printed with a short carbon fiber reinforced polyamide composite. The reduced cubic model was developed by the RSM method, and the correlation between the input parameters and the output response was analyzed by ANOVA. The results show that the layer thickness and raster angle have the most significant influence on tensile strength. As for machine learning, among the nine different tested ANN topologies, the best configuration was found based on the lowest MAE and MSE test sample result. The results show that the proposed model could be a useful tool for predicting tensile strength. Its main advantage is the reduction in time needed for experiments with the LOSO (leave one subject out) k-fold cross validation scheme, offering better generalization ability, given the small set of learning examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.