Although transdermal drug delivery systems (DDS) offer numerous benefits for patients, including the avoidance of both gastric irritation and first-pass metabolism effect, as well as improved patient compliance, only a limited number of active pharmaceutical ingredients (APIs) can be delivered accordingly. Microneedles (MNs) represent one of the most promising concepts for effective transdermal drug delivery that penetrate the protective skin barrier in a minimally invasive and painless manner. The first MNs were produced in the 90s, and since then, this field has been continually evolving. Therefore, different manufacturing methods, not only for MNs but also MN molds, are introduced, which allows for the cost-effective production of MNs for drug and vaccine delivery and even diagnostic/monitoring purposes. The focus of this review is to give a brief overview of MN characteristics, material composition, as well as the production and commercial development of MN-based systems.
Reinforcing the polymer with nanoparticles and fibers improves the mechanical, thermal and electrical properties. Owing to this, the functional parts produced by the FDM process of such materials can be used in industrial applications. However, optimal parameters’ selection is crucial to produce parts with optimal properties, such as mechanical strength. This paper focuses on the analysis of influential process parameters on the tensile strength of FDM printed parts. Two statistical methods, RSM and ANN, were applied to investigate the effect the layer thickness, printing speed, raster angle and wall thickness on the tensile strength of test specimens printed with a short carbon fiber reinforced polyamide composite. The reduced cubic model was developed by the RSM method, and the correlation between the input parameters and the output response was analyzed by ANOVA. The results show that the layer thickness and raster angle have the most significant influence on tensile strength. As for machine learning, among the nine different tested ANN topologies, the best configuration was found based on the lowest MAE and MSE test sample result. The results show that the proposed model could be a useful tool for predicting tensile strength. Its main advantage is the reduction in time needed for experiments with the LOSO (leave one subject out) k-fold cross validation scheme, offering better generalization ability, given the small set of learning examples.
Microneedles (MNs) represent the concept of attractive, minimally invasive puncture devices of micron-sized dimensions that penetrate the skin painlessly and thus facilitate the transdermal administration of a wide range of active substances. MNs have been manufactured by a variety of production technologies, from a range of materials, but most of these manufacturing methods are time-consuming and expensive for screening new designs and making any modifications. Additive manufacturing (AM) has become one of the most revolutionary tools in the pharmaceutical field, with its unique ability to manufacture personalized dosage forms and patient-specific medical devices such as MNs. This review aims to summarize various 3D printing technologies that can produce MNs from digital models in a single step, including a survey on their benefits and drawbacks. In addition, this paper highlights current research in the field of 3D printed MN-assisted transdermal drug delivery systems and analyzes parameters affecting the mechanical properties of 3D printed MNs. The current regulatory framework associated with 3D printed MNs as well as different methods for the analysis and evaluation of 3D printed MN properties are outlined.
In this paper was analyzed and experimentally investigated two additive technologies: Stereolithography -SLA i Fused Deposition Modeling -FDM. The dimensional accuracy (deviation from the given dimensions in relation to the previously defined 3D CAD model as well as the surface roughness of the printed samples by the additive technologies FDM and SLA) was analyzed. The process parameters of these additive technologies were optimized in order to achieve better dimensional accuracy and less surface roughness on the products. Additionally, a comparison of FDM and SLA additive technologies was performed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.