Electrodeposition is a very versatile tool to fabricate multicomponent TiO2 nanotube array (NTA) composites. However, the understanding of the correlation between the component structure and the fabrication technique has not been clearly investigated yet, though it has been observed that the performance of composites is bound up with the component structure. In this work, the photoelectrochemical properties of In2S3-TiO2 NTA composites prepared by CV electrodeposition, potentiostatic electrodeposition and pulse electrodeposition, respectively, were investigated. The results revealed that the as-prepared photoelectrodes exhibited electrodeposition technique-dependent properties, and the pulse prepared In2S3-TiO2 yielded the highest and stable photocurrent response, consequently exhibiting a superior photocatalytic activity in the degradation of p-nitrophenol (PNP). This may be attributed to the homogeneous, ultra-fine structure of In2S3 nanoparticles (NPs), which brings about a high charge separation efficiency. Furthermore, the trapping tests showed that both radicals and holes were the main active species in the photocatalytic degradation of PNP. This work not only provided a firm basis for maximizing photocatalytic activity via tuning fabrication techniques but also gave a deep insight into the photocatalytic mechanism.
One-dimensional (1D) Ag/AgBr/TiO2 nanofibres (NFs) have been successfully fabricated by the one-pot electrospinning method. In comparison with bare TiO2 NFs and Ag/AgBr/PVP (polyvinylpyrrolidone) NFs, the 1D Ag/AgBr/TiO2 NFs photocatalyst exhibits much higher photocatalytic activity in the degradation of a commonly used dye, methylene blue (MB), under visible light. The photocatalytic removal efficiency of MB over Ag/AgBr/TiO2 NFs achieves almost 100 % in 20 min. The photocatalytic reaction follows the first-order kinetics and the rate constant (k ) for the degradation of MB by Ag/AgBr/TiO2 NFs is 5.2 times and 6.6 times that of Ag/AgBr/PVP NFs and TiO2 NFs, respectively. The enhanced photocatalytic activity is ascribed to the stronger visible light absorption, more effective separation of photogenerated electron-hole pairs, and faster charge transfer in the long nanofibrous structure. The Ag/AgBr/TiO2 NFs maintain a highly stable photocatalytic activity due to its good structural stability and the self-stability system of Ag/AgBr. The mechanisms for photocatalysis associated with Ag/AgBr/TiO2 NFs are proposed. The degradation of MB in the presence of scavengers reveals that h + and • O − 2 significantly contribute to the degradation of MB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.