Spin-spin NMR relaxation rate in the ferrous sulphate gelatin dosimeter has been studied in terms of pH, gelatin concentration, the addition of benzoic acid, and sample size. It is demonstrated that R2 is more sensitive to changes in Fe3+ ion concentration than R1 when measuring at frequencies of 64 and 100 MHz. pH has an important effect on dose response curves, and oxygen depletion occurs significantly more rapidly in FeSO4 gelatin than in the liquid FeSO4, resulting in a saturation dose of approximately 80 Gy at depths greater than approximately 3 mm in phantom. The concentration of gelatin can be increased to 12% by weight, and the dosimeter will continue to exhibit a linear dose response. Sensitivity is maintained at higher gel concentrations by pH compensation. Addition of low-concentration benzoic acid to the system does not alter the dose response of the gelatin FeSO4 system. Finally, spontaneous oxidation of Fe2+ ions does not significantly alter the shape of dose response curves but does result in increases in R2 by up to 4% per day.
Non-inductive current drive using second harmonic ECRH at both 28 GHz and 60 GHz has been studied in the CLEO tokamak. At 60 GHz, RF driven currents of up to 5 kA have been observed at n e = 4 x 10 18 rn~3 for 185 kW of injected power, indicating an efficiency of rj = IVJRFRO/PRF = 0 0 °l ( i o 2 ° m ~3. A > m > w ~' ) -T n e R F driven current scaled linearly with total plasma current in the range of 5-15 kA and was maximized when the cyclotron resonance was located near to the centre of the plasma. Sawtooth activity was normally strongly affected and transient sawtooth stabilization was often observed. With detailed theoretical studies it is possible to reproduce both the high absorption efficiencies and the scaling of RF driven current with resonance position seen in the 60 GHz experiments. However, the magnitude of the observed current is a factor of about three below that theoretically predicted. At 28 GHz, no evidence of RF driven current could be detected. Possible reasons for this are discussed.
Abstract-Feature tracking is an algorithm for estimating tissue motion and blood flow using pulse-echo ultrasound. It was proposed as a computationally simpler alternative to other techniques such as autocorrelation and time-domain cross correlation. The advantage of feature tracking is that it selectively extracts easily identifiable parts of the speckle signal (e.g., the local maxima), reducing the amount of information being processed. Studies on feature tracking to date have used stationary, specklegenerating targets to simulate blood flow. Also, feature tracking has not been compared with accepted commercial methods. This study directly compares feature tracking performance with the complex autocorrelation method, which is the most common color flow algorithm. Experiments were performed with both a rotating string phantom and a commercial flow phantom surrounded by tissuemimicking material, using 2.25 MHz and 3.5 MHz transducers, under more realistic signal-to-clutter (;15 to ;35 dB) and signal-to-noise ratios (SNR) (15 dB to 3 dB) than previous translating-phantom tests. The feature tracking approach is shown to produce mean estimates comparable to autocorrelation (R 2 = 0:9954 and 0.9960 for 6-sample and 12-sample autocorrelation, respectively, and R 2 = 0:9998 for both 6-sample and 12-sample feature tracking) for velocities ranging from 10 to 100 cm/s. The variance of featuretracking estimates is shown to compare favorably to the complex autocorrelation approach using the same number of ensemble flow samples (19 to 28% lower standard deviation for 3.5 MHz, 36 to 55% lower standard deviation for 2.25 MHz). However, linear regression of the feature locations does not produce an appreciable improvement in estimation variance. Discussion of the need for further research, particularly in the areas of feature detection and feature correspondence, is given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.