In fast MR imaging with long readout times, such as echo-planar imaging (EPI) and spiral scans, it is important to correct for the effects of field inhomogeneity to reduce image distortion and blurring. Such corrections require an accurate field map, a map of the off-resonance frequency at each voxel. Standard field map estimation methods yield noisy field maps, particularly in image regions with low spin density. This paper, describes regularized methods for field map estimation from two or more MR scans having different echo times. These methods exploit the fact that field maps are generally smooth functions. The methods use algorithms that decrease monotonically a regularized least-squares cost function, even though the problem is highly nonlinear. Results show that the proposed regularized methods significantly improve the quality of field map estimates relative to conventional unregularized methods.
Purpose To develop a highly efficient magnetic field gradient coil for head imaging that achieves 200 mT/m and 500 T/m/s on each axis using a standard 1 MVA gradient driver in clinical whole‐body 3.0T MR magnet. Methods A 42‐cm inner diameter head‐gradient used the available 89‐ to 91‐cm warm bore space in a whole‐body 3.0T magnet by increasing the radial separation between the primary and the shield coil windings to 18.6 cm. This required the removal of the standard whole‐body gradient and radiofrequency coils. To achieve a coil efficiency ~4× that of whole‐body gradients, a double‐layer primary coil design with asymmetric x‐y axes, and symmetric z‐axis was used. The use of all‐hollow conductor with direct fluid cooling of the gradient coil enabled ≥50 kW of total heat dissipation. Results This design achieved a coil efficiency of 0.32 mT/m/A, allowing 200 mT/m and 500 T/m/s for a 620 A/1500 V driver. The gradient coil yielded substantially reduced echo spacing, and minimum repetition time and echo time. In high b = 10,000 s/mm2 diffusion, echo time (TE) < 50 ms was achieved (>50% reduction compared with whole‐body gradients). The gradient coil passed the American College of Radiology tests for gradient linearity and distortion, and met acoustic requirements for nonsignificant risk operation. Conclusions Ultra‐high gradient coil performance was achieved for head imaging without substantial increases in gradient driver power in a whole‐body 3.0T magnet after removing the standard gradient coil. As such, any clinical whole‐body 3.0T MR system could be upgraded with 3‐4× improvement in gradient performance for brain imaging.
Purpose: To use electromagnetic (EM) simulations to study the effects of body type, landmark position, and radiofrequency (RF) body coil type on peak local specific absorption rate (SAR) in 3T magnetic resonance imaging (MRI).Materials and Methods: Numerically computed peak local SAR for four human body models (HBMs) in three landmark positions (head, heart, pelvic) were compared for a high-pass birdcage and a transverse electromagnetic 3T body coil. Local SAR values were normalized to the IEC whole-body average SAR limit of 2.0 W/kg for normal scan mode.Results: Local SAR distributions were highly variable. Consistent with previous reports, the peak local SAR values generally occurred in the neck-shoulder area, near rungs, or between tissues of greatly differing electrical properties. The HBM type significantly influenced the peak local SAR, with stockier HBMs, extending extremities towards rungs, displaying the highest SAR. There was also a trend for higher peak SAR in the head-centric and heart-centric positions. The impact of the coil types studied was not statistically significant. Conclusion:The large variability in peak local SAR indicates the need to include more than one HBM or landmark position when evaluating safety of body coils. It is recommended that an HBM with arms near the rungs be included to create physically realizable high-SAR scenarios.
Tissue conductivity and permittivity are critical to understanding local radio frequency (RF) power deposition during magnetic resonance imaging (MRI). These electrical properties are also important in treatment planning of RF thermotherapy methods (e.g. RF hyperthermia). The electrical properties may also have diagnostic value as malignant tissues have been reported to have higher conductivity and higher relative permittivity than surrounding healthy tissue. In this study, we consider imaging conductivity and permittivity using MRI transmit field maps (B1+ maps) at 3.0 Tesla. We formulate efficient methods to calculate conductivity and relative permittivity from 2-dimensional B1+ data and validate the methods with simulated B1+ maps, generated at 128 MHz. Next we use the recently introduced Bloch-Siegert shift B1+ mapping method to acquire B1+ maps at 3.0 Tesla and demonstrate conductivity and relative permittivity images that successfully identify contrast in electrical properties.
Magnetic resonance thermometry (MRT) offers non-invasive temperature imaging and can greatly contribute to the effectiveness of head and neck hyperthermia. We therefore wish to redesign the HYPERcollar head and neck hyperthermia applicator for simultaneous radio frequency (RF) heating and magnetic resonance thermometry. In this work we tested the feasibility of this goal through an exploratory experiment, in which we used a minimally modified applicator prototype to heat a neck model phantom and used an MR scanner to measure its temperature distribution. We identified several distorting factors of our current applicator design and experimental methods to be addressed during development of a fully MR compatible applicator. To allow MR imaging of the electromagnetically shielded inside of the applicator, only the lower half of the HYPERcollar prototype was used. Two of its antennas radiated a microwave signal (150 W, 434 MHz) for 11 min into the phantom, creating a high gradient temperature profile (ΔTmax = 5.35 °C). Thermal distributions were measured sequentially, using drift corrected proton resonance frequency shift-based MRT. Measurement accuracy was assessed using optical probe thermometry and found to be about 0.4 °C (0.1-0.7 °C). Thermal distribution size and shape were verified by thermal simulations and found to have a good correlation (r(2 )= 0.76).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.