<p>contribute significantly. Pollutant emissions caused by forest fires comprising CO, SO<sub>2</sub> and dust (PM10). This paper will be analyzed estimates of pollutant emissions in both Kalimantan and Sumatra using the estimation method based on the amount of material burned. Estimates of the emissions and dispersion of pollutants such as particulates, sulfur dioxide, carbon monoxide were investigated. Distribution and concentration of pollutants used time series of monthly data and spatial map based on satellite data. Extensive data from the 2010-2014 forest fires data from the ministry of the environment and forestry (KLHK) and forest fire data period 2015 from LAPAN. Pollutant concentration data used AIRS on satellite data, OMI satellite and MERRA during 2010-2011 and in 2014-2015, adjusted to the data in situ vast wildfires for both regions. The results of estimation of pollutant emissions in Sumatra shows emissions from forest fires for the period of 2010 greater than in 2011, reaching 9 tons of CO per year, while emissions from fires and plantations during 2011 were higher than in 2010 with a very high value of 150 Tons/year for pollutants CO. In Kalimantan, emissions from forest fires during 2010-2011 CO emissions highest in West Kalimantan 11.13 tons/year and South Kalimantan 12.14 tons of CO per year. Emissions from fires and plantations in South Kalimantan reached 32.11 tons/year. <span style="text-decoration: line-through;"> </span><strong></strong></p>
<p>PM2.5 particulate monitoring has been carried out in South Jakarta. The research objective is to examine the effect of meteorology and pollutant trajectories on PM2.5 conditions based on daily and seasonal patterns from January 2016 to December 2017. The sources of PM2.5 data come from DKI Jakarta BPLHD. The data analysis method uses excel to obtain daily and seasonal PM2.5 patterns (rainy season, transition season and dry season). PM2.5 pollutant trajectory patterns were obtained using a single-Particle Lagrangian Integrated (HYSPLIT) forward trajectory derived from NOAA (National Oceanic and Atmospheric Administration). Then the correlation between PM2.5 with meteorological parameters during 2016-2017 was analyzed. The results showed the maximum concentration of PM2.5 in 2016 occurred in the dry season (June-August) of 57.43 µg/m<sup>3</sup> and decreased for 2017 by 50.84 µg/m<sup>3</sup>. Meanwhile, minimum PM2.5 concentration occurs during the rainy season (December-February) which is equal to 20 µg/m<sup>3</sup> in 2016, in 2017 PM2.5 decreases to 15.5 µg/m<sup>3</sup>. The results of running model (HYSPLIT) forward trajectory of PM2.5 pollutants show when dry season pollutant leads to the western part of Jakarta city while the PM2.5 pollutant in rainy season moved from Jakarta city leads to the eastern region.</p>
ABSTRAKTelah dilakukan estimasi emisi polutan udara dari sumber non migas di kawasan Timur Indonesia yaitu propinsi Sulawesi dan Papua selama periode tahun 2014 -2016. Makalah ini bermaksud melakukan estimasi emisi tiga polutan pencemar udara yaitu NOx, SO2 dan CO2. Tujuannya agar diketahui jumlah beban emisi polutan dan gas rumah kaca (GRK) di wilayah Sulawesi dan Papua. Metode yang digunakan adalah metode estimasi emisi berbasis data statistik Pendapatan Domestik Regional Bruto (PDRB) di wilayah Papua dan Sulawesi. Hasil estimasi emisi polutan tersebut selanjutnya dilakukan pemetaan emisi polutan. Hasil menunjukkan emisi polutan udara di wilayah Sulawesi lebih tinggi daripada di Papua. Pemetaan emisi di wilayah Sulawesi meliputi 4 wilayah yaitu: Sulawesi Utara, Sulawesi Tengah, Sulawesi Selatan dan Sulawesi Tenggara. Wilayah Papua terdiri dari Papua dan Papua Barat. Analisis emisi polutan CO2 di Sulawesi menunjukkan emisi tertinggi di wilayah Sulawesi selatan yaitu sebesar 84,4; 94,3; dan 103,7 ton berturut-turut dari tahun 2014-2016. Terjadi kenaikan emisi CO2 di Sulawesi Selatan sebesar 23%. Emisi NOx sebesar 0,53; 0,58; dan 0,64 ton, terjadi kenaikan emisi NOx sebesar 21%. Emisi SO2 sebesar 0,42; 0,47 dan 0,51 ton, terjadi kenaikan emisi SO2 sebesar 21% selama tahun 2014 -2016. Untuk wilayah Papua estimasi emisi tertinggi terjadi di wilayah Papua dibanding wilayah Papua Barat. Emisi CO2 selama tahun 2014 hingga tahun 2016 berturut turut adalah sebesar 112; 124,8 dan 144,99 ton, kenaikan emisi CO2 sebesar 29%. Emisi NOx selama tahun 2014-2016 berturut-turut adalah: 0,70; 0,77 dan 0,89 ton, sehingga terjadi kenaikan sebesar 27%. Dan emisi SO2 berturut-turut selama tahun 2014-2016 adalah 0,56; 0,61 dan 0,71 ton, terjadi kenaikan emisi SO2 sebesar 26%. ABSTRACTEstimation of air pollutant emissions from non-oil and gas sources in eastern Indonesia, namely Sulawesi and Papua provinces during the period 2014 -2016 was conducted. This paper intended to estimate the emission of three air pollutants namely NOx, SO2 and CO2. The aim was to find out the amount of pollutant and greenhouse gas (GHG) emissions in the Sulawesi and Papua regions. The method used was the emission estimation method based on statistical data of Gross Regional Domestic Income (GRDP) in the Papua and Sulawesi regions. The results from estimation of pollutant emissions was then carried out for pollutant emissions mapping. The pollutant emission estimation showed the emission of air pollutants in Sulawesi region was higher than Papua. The mapping of emissions in Sulawesi were consisted of four provinces, namely north, central, south and southeast Sulawesi. The Papua region were consisted of Papua and west Papua provinces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.