Pre-coagulation ozonation has been reported to be effective in drinking water treatment processes. Limited data are available on the impact of advanced oxidation processes (AOPs) on Lake Huron water which serves as a primary source of drinking water for many communities around the Great Lakes region. Impact of ozone/hydrogen peroxide based AOP on Lake Huron water was studied. The results show that AOPs can achieve higher particles removal in finished water and deliver improved filtered water turbidity compared to the conventional treatment process. Sharp decline in ultraviolet absorbance at 254 nm (UV 254 ) was observed immediately following AOP treatment while only minimal overall decrease in dissolved organic carbon (DOC) was achieved.
Pharmaceuticals and personal care products (PPCPs), endocrine disrupting compounds (EDCs) and disinfection by-products are suspected to have potential adverse impact on humans and hence their elimination during drinking water treatment is often desired or regulated. Based on pilot-plant experiments with three raw water sources, conventional treatment poorly removed the selected PPCPs and EDCs, while ozone/H 2 O 2 and UV/H 2 O 2 (both) with conventional treatment effectively removed PPCPs and EDCs. In most of the experiments, ozone/H 2 O 2 + conventional treatment additionally removed THM formation potentials (THM-FPs) compared to those of conventional treatment. However, UV/H 2 O 2 treatment was found to increase THM-FPs compared to conventionally treated water.
Although potential risk of pharmaceuticals and personal care products (PPCPs) and endocrine disrupting compounds (EDCs) and trihalomethanes to humans is small or unconfirmed, it is advisable to remove these wastewater-related contaminants to increase public confidence and acceptance as a precautionary principle and consequently their elimination or reduction during drinking water treatment is warranted. Experiments were conducted using the dual train pilot-scale conventional treatment plant with ozone and ultraviolet/hydrogen peroxide (UV/H2O2) with three different raw water sources. Reductions of trihalomethanes-formation potentials (THM-FPs) were 8–52%. Ozone was found to decrease THM-FPs while UV/H2O2 was found to increase THM-FPs in most of the experiments under experimental conditions. Conventional treatment poorly removed the selected PPCPs and EDCs while ozone + conventional treatment provided excellent removal. Conventional + UV/H2O2 treatment also demonstrated effective removal. However, removal of PPCPs and EDCs by conventional + UV/H2O2 treatment provided lower efficacy for Sites B and C, likely due to the presence of scavengers such as organics, bicarbonates, carbonates and particles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.