In 2010 there were more than 200 million cases of malaria, and at least 655,000 deaths 1 . The World Health Organization has recommended artemisinin-based combination therapies (ACTs) for the treatment of uncomplicated malaria caused by the parasite Plasmodium falciparum. Artemisinin is a sesquiterpene endoperoxide with potent antimalarial properties, produced by the plant Artemisia annua. However, the supply of plant-derived artemisinin is unstable, resulting in shortages and price fluctuations, complicating production planning by ACT manufacturers 2 . A stable source of affordable artemisinin is required. Here we use synthetic biology to develop strains of Saccharomyces cerevisiae (baker's yeast) for high-yielding biological production of artemisinic acid, a precursor of artemisinin. Previous attempts to produce commercially relevant concentrations of artemisinic acid were unsuccessful, allowing production of only 1.6 grams per litre of artemisinic acid 3 . Here we demonstrate the complete biosynthetic pathway, including the discovery of a plant dehydrogenase and a second cytochrome that provide an efficient biosynthetic route to artemisinic acid, with fermentation titres of 25 grams per litre of artemisinic acid. Furthermore, we have developed a practical, efficient and scalable chemical process for the conversion of artemisinic acid to artemisinin using a chemical source of singlet oxygen, thus avoiding the need for specialized photochemical equipment. The strains and processes described here form the basis of a viable industrial process for the production of semi-synthetic artemisinin to stabilize the supply of artemisinin for derivatization into active pharmaceutical ingredients (for example, artesunate) for incorporation into ACTs. Because all intellectual property rights have been provided free of charge, this technology has the potential to increase provision of first-line antimalarial treatments to the developing world at a reduced average annual price.Before the discovery of the enzymes that complete the biosynthetic pathway of artemisinin production (see Supplementary Fig. 1 for a complete overview), several improvements were made to the original amorphadiene-producing strain Y337 (ref. 3). We replaced the MET3 promoter with the copper-regulated CTR3 promoter (Fig. 1a), enabling restriction of ERG9 expression (ERG9 encodes squalene synthase, which catalyses the competing reaction of joining two farnesyl diphosphate moieties to form squalene) by addition of the inexpensive repressor CuSO 4 to the medium rather than the more expensive methionine 4-6 . Strains Y1516 (P CTR3 -ERG9) and Y337 (P MET3 -ERG9) (Supplementary Table 1) both produced similar amounts of amorphadiene ( Supplementary Fig. 2), demonstrating the equivalence of the MET3 and CTR3 promoters for repression of ERG9 expression. We compared the production of amorphadiene from Y337 with the production of artemisinic acid from Y285, a variant of Y337 that also expressed the amorphadiene oxidase CYP71AV1 (a cytochrome P450) and A. annua CPR1 (...
Artemisinin, a sesquiterpene lactone endoperoxide derived from the plant Artemisia annua, forms the basis of the most important treatments of malaria in use today. In an effort to elucidate the biosynthesis of artemisinin, an expressed sequence tag approach to identifying the relevant biosynthetic genes was undertaken using isolated glandular trichomes as a source of mRNA. A cDNA clone encoding a cytochrome P450 designated CYP71AV1 was characterized by expression in Saccharomyces cerevisiae and shown to catalyze the oxidation of the proposed biosynthetic intermediates amorpha-4,11-diene, artemisinic alcohol and artemisinic aldehyde. The identification of the CYP71AV1 gene should allow for the engineering of semi-synthetic production of artemisinin in appropriate plant or microbial hosts. Crown
Limitations in the supply of the antimalarial compound artemisinin from Artemisia annua L. have led to an interest in understanding its biosynthesis and enhancing its production. Recent biochemical and molecular genetic data have implicated dihydroartemisinic aldehyde as a precursor to the corresponding acid, which is then converted to artemisinin. Thus, it is important to understand the enzyme or enzymes involved in dihydroartemisinic aldehyde oxidation. Given its activity on artemisinic aldehyde, the cytochrome P450 CYP71AV1 was investigated for its ability to oxidize dihydroartemisinic aldehyde. However, no net activity was detected. In a search for alternative enzymes that could catalyze the oxidation, an expressed sequence tag (EST) collection from A. annua was investigated for relevant cDNAs. This led to the isolation of a full-length cDNA encoding an aldehyde dehydrogenase homologue, named Aldh1, which is highly expressed in trichomes. Expression of the cDNA in E. coli and characterization of the purified recombinant enzyme revealed that the gene product catalyses the NAD(P)-dependent oxidation of the putative artemisinin precursors, artemisinic and dihydroartemsinic aldehydes, and a limited range of other aldehydes. The observed enzyme activity of Aldh1 and the expression pattern of the corresponding gene suggest a role in artemisinin biosynthesis in the glandular secretory trichomes of A. annua.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract, please click on HTML or PDF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.