The heterogeneity of smallholder dairy production systems complicates service provision, information sharing, and dissemination of new technologies, especially those needed to maximize productivity and profitability. In order to obtain homogenous groups within which interventions can be made, it is necessary to define clusters of farmers who undertake similar management activities. This paper explores robustness of production cluster definition using various unsupervised learning algorithms to assess the best approach to define clusters. Data were collected from 8179 smallholder dairy farms in Ethiopia and Tanzania. From a total of 500 variables, selection of the 35 variables used in defining production clusters and household membership to these clusters was determined by Principal Component Analysis and domain expert knowledge. Three clustering algorithms, K-means, fuzzy, and Self-Organizing Maps (SOM), were compared in terms of their grouping consistency and prediction accuracy. The model with the least household reallocation between clusters for training and testing data was deemed the most robust. Prediction accuracy was obtained by fitting a model with fixed effects model including production clusters on milk yield, sales, and choice of breeding method. Results indicated that, for the Ethiopian dataset, clusters derived from the fuzzy algorithm had the highest predictive power (77% for milk yield and 48% for milk sales), while for the Tanzania data, clusters derived from Self-Organizing Maps were the best performing. The average cluster membership reallocation was 15%, 12%, and 34% for K-means, SOM, and fuzzy, respectively, for households in Ethiopia. Based on the divergent performance of the various algorithms evaluated, it is evident that, despite similar information being available for the study populations, the uniqueness of the data from each country provided an over-riding influence on cluster robustness and prediction accuracy. The results obtained in this study demonstrate the difficulty of generalizing model application and use across countries and production systems, despite seemingly similar information being collected.
Characterization of smallholder farmers has been conducted in various researches by using machine learning algorithms, participatory and expert-based methods. All approaches used end up with the development of some subgroups known as farm typologies. The main purpose of this paper is to highlight the main approaches used to characterize smallholder farmers, presenting the pros and cons of the approaches. By understanding the nature and key advantages of the reviewed approaches, the paper recommends a hybrid approach towards having predictive farm typologies. Search of relevant research articles published between 2007 and 2018 was done on ScienceDirect and Google Scholar. By using a generated search query, 20 research articles related to characterization of smallholder farmers were retained. Cluster-based algorithms appeared to be the mostly used in characterizing smallholder farmers. However, being highly unpredictable and inconsistent, use of clustering methods calls in for a discussion on how well the developed farm typologies can be used to predict future trends of the farmers. A thorough discussion is presented and recommends use of supervised models to validate unsupervised models. In order to achieve predictive farm typologies, three stages in characterization are recommended as tested in smallholder dairy farmers datasets: (a) develop farm types from a comparative analysis of more than two unsupervised learning algorithms by using training models, (b) assess the training models’ robustness in predicting farm types for a testing dataset, and (c) assess the predictive power of the developed farm types from each algorithm by predicting the trend of several response variables.
Solid waste management is one of the existing challenges in urban areas
The main purpose of this study was to understand the type of dairy cattle that can be optimally used by smallholder farmers in various production environments such that they will maximize their yields without increasing the level of inputs. Anecdotal evidence and previous research suggests that the optimal level of taurine inheritance in crossbred animals lies between 50 and 75% when considering total productivity in tropical management clusters. We set out to assess the relationship between breed composition and productivity for various smallholder production systems in Tanzania. We surveyed 654 smallholder dairy households over a 1-year period and grouped them into production clusters. Based on supplementary feeding, milk productivity and sale as well as household wealth status four clusters were described: low-feed–low-output subsistence, medium-feed–low-output subsistence, maize germ intensive semi-commercial and feed intensive commercial management clusters. About 839 crossbred cows were genotyped at approximately 150,000 single nucleotide polymorphism (SNP) loci and their breed composition determined. Percentage dairyness (proportion of genes from international dairy breeds) was estimated through admixture analysis with Holstein, Friesian, Norwegian Red, Jersey, Guernsey, N’Dama, Gir, and Zebu as references. Four breed types were defined as RED–GUE (Norwegian Red/Friesian–Guernsey; Norwegian Red/Friesian–Jersey), RED–HOL (Norwegian Red/Friesian–Holstein), RED–Zebu (Norwegian Red/Friesian–Zebu), Zebu–RED (Zebu–Norwegian Red/Friesian) based on the combination of breeds that make up the top 76% breed composition. A fixed regression model using a genomic kinship matrix was used to analyze milk yield records. The fitted model accounted for year-month-test-date, parity, age, breed type and the production clusters as fixed effects in the model in addition to random effects of animal and permanent environment effect. Results suggested that RED–Zebu breed type with dairyness between 75 and 85% is the most appropriate for a majority of smallholder management clusters. Additionally, for farmers in the feed intensive management group, animals with a Holstein genetic background with at least 75% dairy composition were the best performing. These results indicate that matching breed type to production management group is central to maximizing productivity in smallholder systems. The findings from this study can serve as a basis to inform the development of the dairy sector in Tanzania and beyond.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.