Due to its unique electronic property and the Pauli Blocking Principle, atomic layer graphene possesses wavelength-independent ultrafast saturable absorption, which can be exploited for the ultrafast photonics application. Through chemical functionalization, a graphene-polymer nanocomposite membrane was fabricated and firstly used to mode lock a fiber laser. Stable mode locked solitons with 3 nJ pulse energy, 700 fs pulse width at the 1590 nm wavelength have been directly generated from the laser. We show that graphene-polymer nanocomposites could be an attractive saturable absorber for high power fiber laser mode locking.
The seeds and sprouts of mung bean (Vigna radiata), a common food, contain abundant nutrients with biological activities. This review provides insight into the nutritional value of mung beans and its sprouts, discussing chemical constituents that have been isolated in the past few decades, such as flavonoids, phenolic acids, organic acids, amino acids, carbohydrates, and lipids. Moreover, we also summarize dynamic changes in metabolites during the sprouting process and related biological activities, including antioxidant, antimicrobial, anti-inflammatory, antidiabetic, antihypertensive, lipid metabolism accommodation, antihypertensive, and antitumor effects, etc., with the goal of providing scientific evidence for better application of this commonly used food as a medicine.
We report on the generation of 281.2 nJ mode locked pulses directly from an erbium-doped fiber laser mode-locked with the nonlinear polarization rotation technique. We show that apart from the conventional dissipative soliton operation, an all-normal-dispersion fiber laser can also emit square-profile dissipative solitons whose energy could increase to a very large value without pulse breaking.
Solitons are stable localized wave packets that can propagate long distance in dispersive media without changing their shapes. As particle-like nonlinear localized waves, solitons have been investigated in different physical systems. Owing to potential applications in optical communication and optical signal processing systems, optical solitons have attracted intense interest in the past three decades. To experimentally study the formation and dynamics of temporal optical solitons, fiber lasers are considered as a wonderful nonlinear system. During the last decade, several kinds of theoretically predicted solitons were observed experimentally in fiber lasers. In this review, we present a detailed overview of the experimentally verified optical solitons in fiber lasers, including bright solitons, dark solitons, vector solitons, dissipative solitons, dispersion-managed solitons, polarization domain wall solitons, and so on. An outlook for the development on the solitons in fiber lasers is also provided and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.