The increasing number of students who graduated each year causes a lot of student data that need to be processed, causing difficulties in grouping the data. In this research apply Data Mining by using Clustering method to classify the quality of graduate students of Faculty of Computer Science Dehasen University of Bengkulu based on GPA and Study Program. The algorithm used is K-Means Clustering, where the data are grouped based on the same characteristics will be entered into the same group and the data set entered into the group does not overlap. Information displayed in the form of group ?? a group of graduate students who dominate the Study Program, so it is known to the group that has the best graduate quality. The results of this study will assist the University in analyzing the quality of graduated students and the most potential study programs. Software used to help this grouping is Rapid Miner. Keywords: K-Means Clustering, Study Program, Graduate Quality, Rapid Miner Abstrak: Semakin meningkatnya jumlah mahasiswa yang diluluskan setiap tahunnya menyebabkan banyaknya data mahasiswa yang perlu diolah sehingga menyebabkan kesulitan dalam pengelompokan data tersebut. Pada penelitian ini menerapkan Data Mining dengan menggunakan metode Clustering untuk mengelompokkan kualitas lulusan mahasiswa Fakultas Ilmu Komputer Universitas Dehasen Bengkulu berdasarkan IPK dan Program Studi. Algoritma yang digunakan yaitu K-Means Clustering, dimana data dikelompokkan berdasarkan karakteristik yang sama akan dimasukkan ke dalam kelompok yang sama dan set data yang dimasukkan ke dalam kelompok tidak tumpang tindih. Informasi yang ditampilkan berupa kelompok � kelompok lulusan mahasiswa yang mendominasi Program Studi, sehingga diketahui kelompok yang memiliki kualitas lulusan terbaik. Hasil penelitian ini akan membantu pihak Universitas dalam menganalisa kualitas mahasiswa yang diluluskan dan program studi yang paling berpotensi diminati. Software yang digunakan untuk membantu pengelompokan ini adalah Rapid Miner. Keyword: K-Means Clustering, Program Studi, Kualitas Lulusan, Rapid Miner
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.