A 250 year simulation of a strongly eddying global version of the Parallel Ocean Program (POP) model reveals a new mode of intrinsic multidecadal variability, the Southern Ocean Mode (SOM), with a period of 40–50 year. The peak‐to‐peak difference in the global ocean heat content within a multidecadal cycle is up to 60 ZJ. This change results from surface heat flux variations in the South Atlantic and propagation of temperature anomalies along the Antarctic Circumpolar Current and into the Weddell gyre around 30°E. The temperature anomalies propagate as deep as 5000 m along the isopycnals between 50°S and 30°S and induce multidecadal changes in the Atlantic Meridional Overturning Circulation. A positive feedback loop between the generation of eddies through baroclinic instability and the dynamics of the mean circulation is essential for the existence of the SOM. The dominant physics appears similar to that responsible for variability found in a three‐layer quasi‐geostrophic eddy‐resolving model. This combined with the fact that the SOM is not found in a noneddying version of the same global POP model further suggests that eddy processes are crucial for its existence and/or excitation.
Here we present a long‐term (1850–2200) best estimate of Greenland ice sheet (GrIS) freshwater runoff that improves spatial detail of runoff locations and temporal resolution. Ice discharge is taken from observations since 2000 and assumed constant in time. Surface meltwater runoff is retrieved from regional climate model output for the recent past and parameterized for the future based on significant correlations between runoff and midtropospheric (500 hPa) summer temperature changes over the GrIS. The simplicity of this approach enables assimilation of meltwater runoff into coupled climate models, which is demonstrated here in a case study with the medium‐resolution (1°) Community Earth System Model. The model results suggest that the decrease in Atlantic Meridional Overturning Circulation (AMOC) is dominated by warming of the surface ocean and enhanced GrIS freshwater forcing leads to a slightly enhanced (−1.2 sverdrup in the 21st century) weakening of the AMOC.
Uncertainties in the rate and magnitude of sea-level rise (SLR) complicate decision making on coastal adaptation. Large uncertainty arises from potential ice mass-loss from Antarctica that could rapidly increase SLR in the second half of this century. The implications of SLR may be existential for a lowlying country like the Netherlands and warrant exploration of high-impact low-likelihood scenarios. To deal with uncertain SLR, the Netherlands has adopted an adaptive pathways plan. This paper analyzes the implications of storylines leading to extreme SLR for the current adaptive plan in the Netherlands, focusing on flood risk, fresh water resources, and coastline management. It further discusses implications for coastal adaptation in low-lying coastal zones considering timescales of adaptation including the decisions lifetime and lead-in time for preparation and implementation. We find that as sea levels rise faster and higher, sand nourishment volumes to maintain the Dutch coast may need to be up to 20 times larger than to date in 2100, storm surge barriers will need to close at increasing frequency until closed permanently, and intensified saltwater intrusion will reduce freshwater availability while the demand is rising. The expected lifetime of investments will reduce drastically. Consequently, step-wise adaptation needs to occur at an increasing frequency or with larger increments while there is still large SLR uncertainty with the risk of under-or overinvesting. Anticipating deeply uncertain, high SLR scenarios helps to enable timely adaptation and to appreciate the value of emission reduction and monitoring of the Antarctica contribution to SLR.
[1] Satellite altimetry data covering 18 years together with hydrographic observations around south Madagascar show that after separation from the coast, the South East Madagascar Current (SEMC) propagates southwestward and breaks up into a regular series of symmetric counterrotating vortex pairs. Most of them split and propagate into the Agulhas retroflection system. Interannual variability of the dipole formation is related to the El Nino-Southern Oscillation. In the observation period two "early" Agulhas retroflection events appeared both related to strong Madagascar dipoles. The symmetry of the dipoles may originate from the boundary current where negative vorticity on the inshore side is adjacent to positive vorticity further offshore.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.