Background
The genetic analysis of human primary immunodeficiencies has defined the contribution of specific cell populations and molecular pathways in host defense against infections. Disseminated infection caused by BCG vaccines is an early manifestation of primary immunodeficiencies, such as severe combined immunodeficiency. In many affected individuals, the etiology of disseminated BCG disease is unexplained.
Methods
We investigated an infant presenting with features of severe immunodeficiency, including early-onset disseminated BCG disease, requiring hematopoietic stem cell transplantation. We also studied two otherwise healthy adults with a history of disseminated but curable BCG disease in childhood. We characterized the monocyte and dendritic cells compartments in these three persons and sequenced candidate genes, mutation of which could plausibly confer susceptibility to BCG disease.
Results
We detected two distinct disease-causing mutations affecting the transcriptional regulator IRF8. Both K108A and T80A mutations impair IRF8 transcriptional activity by disrupting IRF8 interaction with DNA. Mutation K108E was associated with an autosomal recessive severe immunodeficiency with a complete lack of circulating monocytes and dendritic cells. Mutation T80A was associated with an autosomal dominant milder immunodeficiency and a selective depletion of CD11c+ CD1c+ circulating dendritic cells.
Conclusions
These findings define a new class of human primary immunodeficiency, affecting the differentiation of mononuclear phagocytes. They also demonstrate that human IRF8 is critically required for the development of monocytes and dendritic cells and for anti-mycobacterial immunity.
Human inborn errors of IFN-γ immunity underlie mycobacterial diseases. We describe patients with Mycobacterium bovis (BCG) disease who are homozygous for loss-of-function mutations of SPPL2A. This gene encodes a transmembrane protease that degrades the N-terminal fragment (NTF) of CD74 (HLA invariant chain) in antigen-presenting cells. The CD74 NTF therefore accumulates in the HLA class II myeloid and lymphoid cells of SPPL2a-deficient patients. This toxic fragment selectively depletes IL-12- and IL-23-producing CD1c conventional dendritic cells (cDC2s) and their circulating progenitors. Moreover, SPPL2a-deficient memory T1* cells selectively fail to produce IFN-γ when stimulated with mycobacterial antigens in vitro. Finally, Sppl2a mice lack cDC2s, have CD4 T cells that produce small amounts of IFN-γ after BCG infection, and are highly susceptible to infection with BCG or Mycobacterium tuberculosis. These findings suggest that inherited SPPL2a deficiency in humans underlies mycobacterial disease by decreasing the numbers of cDC2s and impairing IFN-γ production by mycobacterium-specific memory T1* cells.
Reviewing recent advances in our understanding of the small subgroup of PIDD patients with defined causes for autoimmunity may lead to the development of more effective treatment strategies for idiopathic human autoimmune diseases.
This unique observation supports previous studies of PCM suggesting that IL-12, IL-23, and IFN-gamma play an important role in protective immunity to P. brasiliensis. Tuberculosis and PCM are thus not only related clinically and pathologically, but also by their immunological pathogenesis. Our study further expands the spectrum of clinical manifestations of inherited defects of the IL-12/IL-23-IFN-gamma axis. Patients with unexplained deep fungal infections, such as PCM, should be tested for defects in the IL-12/IL-23-IFN- gamma axis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.