Increased homocysteine (Hcy) levels in plasma correlate with the risk of thromboic events. Red blood cells (RBCs), the most abundant blood cells in circulation, also play an active role in the process of thrombus formation. However, the effect of Hcy on procoagulant activity (PCA) of RBCs is unclear. In the present study, RBCs from healthy adults were treated with Hcy (8, 20, 80, 200, 800 μmol/L) for 24 h. Phosphatidylserine (PS) exposure of RBCs and red blood cell-derived microparticles (RMPs) release were detected using Alexa Fluor 488-lactadherin. PCA was assessed by coagulation time and purified clotting complexes testes. We found that Hcy treatment dose dependently enhanced PS exposure and consequent PCA of RBCs. Hcy also elevated the formation of procoagulant RMPs, with statistical significance at 800 μmol/L of Hcy. Moreover, 128 nmol/L lactadherin inhibited about 90% PCA of RBCs and RMPs. Our data suggest that PS exposure and RMPs shedding are key sources for Hcy-induced PCA of RBCs. Lactadherin could be used to modulate the anticoagulant and procoagulant balance in this process.
Background: Non-small cell lung cancer (NSCLC) is a devastating disease with a heterogeneous prognosis, and the molecular mechanisms underlying tumor progression remain elusive. Mammalian Eps15 homology domain 1 (EHD1) plays a promotive role in tumor progression, but its role in cancer angiogenesis remains unknown. This study thus explored the role of EHD1 in angiogenesis in NSCLC. Methods: The changes in angiogenesis were evaluated through human umbilical vein endothelial cell (HUVEC) proliferation, migration and tube formation assays. The impact of EHD1 on β2-adrenoceptor (β2AR) signaling was evaluated by Western blotting, quantitative real-time polymerase chain reaction (qRT-PCR) analysis, and enzymelinked immunosorbent assay (ELISA). The interaction between EHD1 and β2AR was confirmed by immunofluorescence (IF) and coimmunoprecipitation (Co-IP) experiments, and confocal microscopy immunofluorescence studies revealed that β2AR colocalized with the recycling endosome marker Rab11, which indicated β2AR endocytosis. Xenograft tumor models were used to investigate the role of EHD1 in NSCLC tumor growth. Results: The microarray analysis revealed that EHD1 was significantly correlated with tumor angiogenesis, and lossand gain-of-function experiments demonstrated that EHD1 potentiates HUVEC proliferation, migration and tube formation. EHD1 knockdown inhibited β2AR signaling activity, and EHD1 upregulation promoted vascular endothelial growth factor A (VEGFA) and β2AR expression. Interestingly, EHD1 interacted with β2AR and played a novel and critical role in β2AR endocytic recycling to prevent receptor degradation. Aberrant VEGFA or β2AR expression significantly affected EHD1-mediated tumor angiogenesis. The proangiogenic role of EHD1 was confirmed in xenograft tumor models, and immunohistochemistry (IHC) analysis confirmed that EHD1 expression was positively correlated with VEGFA expression, microvessel density (MVD) and β2AR expression in patient specimens. Conclusion: Collectively, the data obtained in this study suggest that EHD1 plays a critical role in NSCLC angiogenesis via β2AR signaling and highlight a potential target for antiangiogenic therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.