To solve the complex structure, poor flexibility, and heavyweight of the rigid robotic hand, a pneumatic four-finger flexible robotic hand is developed in this paper. The robotic hand is about 1.3 times as large as that of a human hand and each finger is composed of a single multi-drive bending joint. The kinematic model of the robotic hand is established by using homogeneous coordinate transformation matrix. Through the simulation experiment of the robotic hand structure, the trajectory, and workspace of the robotic hand are established. According to the experimental results of grasping performance of the robotic hand, the grasping forces of different geometric positions along the finger axis are obtained. The results show that the robotic hand can realize a variety of grasping modes, has flexible action and strong adaptive ability; it can grasp, hold, and pinch, as well as stably grasp objects such as cylinder, box, and sphere. In pinch grasp mode, the robotic hand can grip objects as thin as 1 mm and the diameter of the grasped object varies from 28 mm to 160 mm; the maximum mass that the robotic hand can grasp an object with a diameter of 90 mm under 0.35 MPa is 1386 g.
An antagonistic pneumatic bidirectional rotary flexible joint was developed to improve both safety and environmental adaptability of service robots and associated human interactions. The joint comprises two semicircular rotary actuators with positive and negative symmetrical distributions and a pneumatic brake. As such, it achieves forward and reverse rotations, and its damping and braking are adjustable in real time, enabling it to maintain its position. According to the force/torque balance at the free end of the rotary actuator, the rotation angle static model was established. The relationship between the actuator rotation angle, driving torque, impedance torque, and air pressure was obtained experimentally. The brake airbag was manufactured using additive manufacturing and silicone gel casting technologies. The mathematical model of the braking torque was established next, and the model was verified through experiments. Furthermore, an experimental system was constructed to carry out the air pressure-angle, air pressure-torque, and speed response experiments without the load on the joint. The results have shown that the joint can achieve any position within ± 68.5° when the driving air pressure varies from 0 to 0.30 MPa; the time required to reach the maximum angle was 0.85 s. The joint has shown good adjustable damping characteristics. Lastly, the braking torque reached 4.21 Nm at 0.32 MPa, effectively maintaining the position.
Conventional Proportional Integral Derivative (PID) control is often used in present industrial field. Fuzzy rules and its inference mechanism are the assurance of achieving feature fusion. The flexible joint is composed of four elongation artificial muscles with parallel arrangement. The robot hand has five multi-actuated fingers each with three flexible joints. Because the control parameters are fixed, the tuning results are difficult to meet the demands and the system is unstable or even out of control. This paper has a design and analysis on the dual thumb pneumatic flexible robot hand base on the active flexible bending joints we have developed. In this paper, Matlab is used to confirm that the fuzzy control system has good adaptability and anti-jamming capability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.