New-generation sequencing technologies, among them SNP chips for massive genotyping, are useful for the effective management of genetic resources. To date, molecular studies in Peruvian cattle are still scarce. For the first time, the genetic diversity and population structure of a reproductive nucleus cattle herd of four commercial breeds from a Peruvian institution were determined. This nucleus comprises Brahman (N = 9), Braunvieh (N = 9), Gyr (N = 5), and Simmental (N = 15) breeds. Additionally, samples from a locally adapted creole cattle, the Arequipa Fighting Bull (AFB, N = 9), were incorporated. Female individuals were genotyped with the GGPBovine100K and males with the BovineHD. Quality control, and the proportion of polymorphic SNPs, minor allele frequency, expected heterozygosity, observed heterozygosity, and inbreeding coefficient were estimated for the five breeds. Admixture, principal component analysis (PCA), and discriminant analysis of principal components (DAPC) were performed. Also, a dendrogram was constructed using the Neighbor-Joining clustering algorithm. The genetic diversity indices in all breeds showed a high proportion of polymorphic SNPs, varying from 51.42% in Gyr to 97.58% in AFB. Also, AFB showed the highest expected heterozygosity estimate (0.41 ± 0.01), while Brahman the lowest (0.33 ± 0.01). Besides, Braunvieh possessed the highest observed heterozygosity (0.43 ± 0.01), while Brahman the lowest (0.37 ± 0.02), indicating that Brahman was less diverse. According to the molecular variance analysis, 75.71% of the variance occurs within individuals, whereas 24.29% occurs among populations. The pairwise genetic differentiation estimates (FST) between breeds showed values that ranged from 0.08 (Braunvieh vs. AFB) to 0.37 (Brahman vs. Braunvieh). Similarly, pairwise Reynold’s distance ranged from 0.09 (Braunvieh vs. AFB) to 0.46 (Brahman vs. Braunvieh). The dendrogram, similar to the PCA, identified two groups, showing a clear separation between Bos indicus (Brahman and Gyr) and B. taurus breeds (Braunvieh, Simmental, and AFB). Simmental and Braunvieh grouped closely with the AFB cattle. Similar results were obtained for the population structure analysis with K = 2. The results from this study would contribute to the appropriate management, avoiding loss of genetic variability in these breeds and for future improvements in this nucleus. Additional work is needed to speed up the breeding process in the Peruvian cattle system.
The Peruvian creole cattle (PCC) is a neglected breed and an essential livestock resource in the Andean region of Peru. To develop a modern breeding program and conservation strategies for the PCC, a better understanding of the genetics of this breed is needed. We sequenced the whole genome of the PCC using a de novo assembly approach with a paired-end 150 strategy on the Illumina HiSeq 2500 platform, obtaining 320 GB of sequencing data. A reference scaffolding was used to improve the draft genome. The obtained genome size of the PCC was 2.81 Gb with a contig N50 of 108 Mb and 92.59% complete BUSCOs. This genome size is similar to the genome references of Bos taurus and B. indicus. In addition, we identified 40.22% of repetitive DNA of the genome assembly, of which retroelements occupy 32.39% of the total genome. A total of 19,803 protein-coding genes were annotated in the PCC genome. For SSR data mining, we detected similar statistics in comparison with other breeds. The PCC genome will contribute to a better understanding of the genetics of this species and its adaptation to tough conditions in the Andean ecosystem.
The alpaca population mostly consists of the Huacaya phenotype and is widely distributed in Southern Peru. This study aimed to estimate the genetic diversity and population structure of two Huacaya alpaca populations (Ajoyani and Quimsachata) using fourteen and twelve microsatellite markers for each population, respectively. A total of 168 alpaca biological samples were outsourced to Peruvian laboratories for DNA extraction and genotyping. For genetic diversity, observed heterozygosity (Ho), expected heterozygosity (He), polymorphism information content (PIC), and fixation indices values were estimated. An admixture analysis was performed for the population structure analysis. Different programs were used for these estimations. In total, 133 (Ajoyani) and 129 (Quimsachata) alleles were found, with a range of 4 to 17 by locus. The mean HO, HE, and PIC per marker for Ajoyani were 0.764 ± 0.112, 0.771 ± 0.1, and 0.736; for Quimsachata, they were 0.783 ± 0.087, 0.773 ± 0.095, and 0.738, respectively. The population structure showed no structure with K = 2. This study provides useful indicators for the creation of appropriate alpaca conservation programs.
The Peruvian creole cattle (PCC) is a neglected breed, and is an essential livestock resource in the Andean region of Peru. To develop a modern breeding program and conservation strategies for the PCC, a better understanding of the genetics of this breed is needed. We sequenced the whole genome of the PCC using a paired-end 150 strategy on the Illumina HiSeq 2500 platform, obtaining 320 GB of sequencing data. The obtained genome size of the PCC was 2.77 Gb with a contig N50 of 108Mb and 92.59% complete BUSCOs. Also, we identified 40.22% of repetitive DNA of the genome assembly, of which retroelements occupy 32.39% of the total genome. A total of 19,803 protein-coding genes were annotated in the PCC genome. We downloaded proteomes and genomes of the Bovinae subfamily, and conducted a comparative analysis with our draft genome. Phylogenomic analysis showed that PCC is related to Bos indicus. Also, we identified 7,746 family genes shared among the Bovinae subfamily. This first PCC genome is expected to contribute to a better understanding of its genetics to adapt to the tough conditions of the Andean ecosystem, and evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.