Engineered nanomaterials (ENMs) are increasingly entering the environment with uncertain consequences including potential ecological effects. Various research communities view differently whether ecotoxicological testing of ENMs should be conducted using environmentally relevant concentrations—where observing outcomes is difficult—versus higher ENM doses, where responses are observable. What exposure conditions are typically used in assessing ENM hazards to populations? What conditions are used to test ecosystem-scale hazards? What is known regarding actual ENMs in the environment, via measurements or modeling simulations? How should exposure conditions, ENM transformation, dose, and body burden be used in interpreting biological and computational findings for assessing risks? These questions were addressed in the context of this critical review. As a result, three main recommendations emerged. First, researchers should improve ecotoxicology of ENMs by choosing test endpoints, duration, and study conditions—including ENM test concentrations—that align with realistic exposure scenarios. Second, testing should proceed via tiers with iterative feedback that informs experiments at other levels of biological organization. Finally, environmental realism in ENM hazard assessments should involve greater coordination among ENM quantitative analysts, exposure modelers, and ecotoxicologists, across government, industry, and academia.
Ecotoxicological effects of the diphenyl ether herbicide fomesafen, applied alone or in combination with the adjuvant Agral 90 (mixture of polyethoxylated derivatives of nonylphenol), were assessed on planktonic communities in 18-m3 outdoor mesocosms during a nine-month study. Four mesocosms were treated with fomesafen only (nominal concentration: 40 microg/L), four were treated with the mixture fomesafen-Agral 90 (nominal concentration: 40 microg/L and 90 microg/L, respectively), and four were kept as the controls. Five treatments were performed every three weeks from April 18, 2000. Mean (+/- standard error [SE]) values of fomesafen concentration in water of 62.5 (+/-5.3) and 19.4 (+/-7.6) microg/L were measured at the end of the treatment period in fomesafen- and mixture-treated mesocosms, respectively. Fomesafen, either alone or in mixture with Agral 90, had a significant positive effect on the abundance and biovolume of Cyanobacteria, Cryptophyceae, Dinophyceae, and Bacillariophyceae. Chlorophyceae were inhibited by the herbicide and laboratory toxicity tests confirmed that green algae were more sensitive toward fomesafen than other algal classes. A positive effect of treatments on phytoplankton taxonomic diversity also was observed, indicating that, like natural disturbances of intermediate strength, xenobiotics sometimes may enhance the diversity of algal communities. Fomesafen alone did not have any clear effect on zooplankton. Abundance of calanoid copepods was reduced significantly in the mixture-treated ponds, suggesting either a direct effect of the adjuvant and/or an enhancement of herbicide toxicity by Agral 90. The abundance of other zooplanktonic herbivorous groups increased due to a reduced competition for food for herbivorous species and a higher availability of preys for predators. No algal bloom was observed in the treated ponds, presumably because of grazing pressure and the low availability of nutrients.
Plant biology and pathology / Biologie et pathologie végétales A chemotaxonomic method to quantify phytoplankton groups in freshwater lentic mesocosms: an approach including chlorophyll a breakdown productsUne méthode chémotaxonomique pour la quantification des phytoplanctons en écosystème lentique : une approche incluant des produits de dégradation de la chlorophylle a
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.