Background/Aims: Chinese angelica polysaccharide (CAP) is the main effective ingredient of angelica sinensis and exerts anti-inflammatory and anti-apoptotic effects on many diseases. This study aimed to explore the pharmacological potential of CAP on spinal cord injury (SCI). Methods: PC12 cells were pretreated by CAP and were subjected to LPS. Transfection was performed to alter the expression of COX-1. Cell viability and apoptotic cell rate were measured by CCK-8 and flow cytometry respectively. qRT-PCR and western blot analysis were performed to assess the expression changes of pro-inflammatory cytokines, apoptosis-related factor and core kinases in PI3K/AKT pathway. Results: LPS stimulation induced significant cell damage in PC12 cells as cell viability was repressed, apoptosis was induced and the expression levels of IL-1β, IL-6, IL-8, and TNF-α were increased. CAP pretreatment protected PC12 cells against LPS-induced cell damage. Meanwhile CAP treatment reduced the expression of COX-1 even in LPS-stimulated PC12 cells. More importantly, COX-1 overexpression abolished the protective effects of CAP on LPS-injured PC12 cells. Finally, Western blot analytical results showed that CAP activated PI3K/AKT pathway also in a COX-1-dependent manner. Conclusion: CAP exerted anti-apoptotic and anti-inflammatory effects on LPS-injured PC12 cells via down-regulation of COX-1.
Parkinson's disease (PD) is characterized by selective and progressive degeneration of dopaminergic neurons in the substantia nigra (SN). Lipopolysaccharide (LPS) can induce chronic inflammation and has been widely used to study the pathogenesis of PD. In this study, a single intracerebroventricular injection of LPS was used to induce neurotoxic effects on dopaminergic neurons in Sprague-Dawley rats. The longterm neurotoxic effects of LPS were evaluated at different time points. Microglia were activated in the hippocampus and striatum at 4 weeks, and in the SN at 24 weeks. Astrocytes were activated in the hippocampus and nigrostriatal system at 2 and 24 weeks. The expression of brain-derived neurotrophic factor in the SN increased at 4 weeks and decreased after 12 weeks, and tyrosine hydroxylase-positive neurons in the SN were shown to have an atrophic appearance, with cell loss evident after 24 weeks. Phospho-a-synuclein expression, a reflection of parkinsonian pathogenesis, increased at 12 weeks, and peaked at 24 weeks. Abnormal motor behavior appeared at 16 weeks and lasted up to 48 weeks. These results indicate that microglia are activated for several months after a single, low dose injection of LPS, which eventually results in progressive and selective damage to dopaminergic neurons in the SN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.