Characteristics of a double-power electrode dielectric barrier discharge of an argon plasma jet generated at the atmospheric pressure are investigated in this paper. Time-averaged optical emission spectroscopy is used to measure the plasma parameters, of which the excitation electron temperature is determined by the Boltzmann's plot method whereas the gas temperature is estimated using a fiber thermometer. Furthermore, the Stark broadening of the hydrogen Balmer Hβ line is applied to measure the electron density, and the simultaneous presence of comparable Doppler, van der Waals, and instrumental broadenings is discussed. Besides, properties of the jet discharge are also studied by electrical diagnosis. It has been found that the electron densities in this argon plasma jet are on the order of 1014 cm−3, and the excitation temperature, gas temperature, and electron density increase with the applied voltage. On the other hand, these parameters are inversely proportional to the argon gas flow rate.
BASIC AND TRANSLATIONAL PANCREASCONCLUSIONS: Collectively, we identify SIRT5 as a key tumor suppressor in PDAC, whose loss promotes tumorigenesis through increased noncanonic use of glutamine via GOT1, and that SIRT5 activation is a novel therapeutic strategy to target PDAC.
An experimental study is presented of a cold atmospheric Ar plasma jet with distinct advantages of low-working voltage and high plasma stability. To effectively improve the performance of the jet, a pair of pin electrodes with one floating in the air is applied. Variation in the applied voltage and/or the Ar gas flow causes the transition of the jet plasma from ignition, through stable plume to an unstable stage. The characteristics of the jet discharge are also studied by means of the electrical and spectroscopic diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.